Integration of the Schrodinger equation by canonical transformations

被引:10
|
作者
Tsaur, G [1 ]
Wang, JP [1 ]
机构
[1] Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan
来源
PHYSICAL REVIEW A | 2002年 / 65卷 / 01期
关键词
D O I
10.1103/PhysRevA.65.012104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Owing to the operator nature of the quantum dynamical variables, classical canonical transformations for integrating the equations of motion cannot be extended to the quantum domain. In this paper, a general procedure is developed to construct the sequences of quantum canonical transformations for integrating the Schrodinger equations. The sequence is made of three elementary canonical transformations that constitute a much larger class than the unitary transformations. In conjunction with the procedure, we also developed a factorization technique that is analogous to the method of integration factor in classical integration. For demonstration, with the same procedure we integrate nine nontrivial models, including the centripetal barrier potential, the Kratzer's molecular potential, the Morse potential, the Poschl-Teller potential, the Hulthen potential, etc.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] CANONICAL INTEGRATION OF THE COLLISIONLESS BOLTZMANN-EQUATION
    CHANNELL, PJ
    THREE-DIMENSIONAL SYSTEMS, 1995, 751 : 152 - 161
  • [32] Effective Mass Schrodinger Equation via Point Canonical Transformation
    Arda, Altug
    Sever, Ramazan
    CHINESE PHYSICS LETTERS, 2010, 27 (07)
  • [33] Induction of Schrodinger cat type states by canonical transformations in quantum phase space
    Zúñiga-Segundo, A
    REVISTA MEXICANA DE FISICA, 2003, 49 (05) : 401 - 406
  • [34] Equivalence transformations and differential invariants of a generalized nonlinear Schrodinger equation
    Senthilvelan, M
    Torrisi, M
    Valenti, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3703 - 3713
  • [35] ON CANONICAL SO(4,1) TRANSFORMATIONS OF DIRAC EQUATION
    BRACKEN, AJ
    COHEN, HA
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (11) : 2024 - &
  • [36] A Schrodinger-type equation in homogeneous canonical formalism and protective measurement
    Aouda, K
    Naka, S
    PROGRESS OF THEORETICAL PHYSICS, 1999, 101 (01): : 177 - 188
  • [37] Precise integration for the time-dependent Schrodinger equation
    Zhang, Suying
    Li, Jiangdan
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [38] Modified THDRK methods for the numerical integration of the Schrodinger equation
    Fang, Yonglei
    Yang, Yanping
    You, Xiong
    Ma, Lei
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (10):
  • [39] Linear Multistep Methods for the Efficient Integration of the Schrodinger Equation
    Anastassi, Z. A.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 1608 - +
  • [40] Projected Explicit Lawson Methods for the Integration of Schrodinger Equation
    Cano, Begona
    Gonzalez-Pachon, Adolfo
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (01) : 78 - 104