Teleportation of single and bipartite states via a two qubits xxz Heizenberg spin chain in a non-Markovian environment

被引:14
作者
Fouokeng, G. C. [1 ]
Tedong, E. [1 ]
Tene, A. G. [1 ]
Tchoffo, M. [1 ]
Fai, L. C. [1 ]
机构
[1] Univ Dschang, Fac Sci, Dept Phys, Lab Mat Condensee Elect & Traitement Signal, POB 67, Dschang, Cameroon
关键词
Teleportation; Bipartite state; Non-Markovian environment; Dzyaloshinski-Moriya interactions; Fidelity; Entanglement; ENTANGLEMENT TELEPORTATION; QUANTUM TELEPORTATION; DYNAMICS; MODEL;
D O I
10.1016/j.physleta.2020.126719
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum teleportation of single particle states and bipartite spin states via a channel composed of a two-qubits xxz Heisenberg spin chain under the effects of Dzyaloshinski-Moriya interaction, which interacts with a non-Markovian environment as a noisy quantum channel is investigated. The quantum channel and the initial state of the system are shown to be the fundamental elements that fully characterize entanglement and the teleportation average fidelity. For too low entanglement of the channel the output entanglement becomes zero (there is teleportation failure). For an initial entangled state, the Non-Markovian environment causes revivals in the average fidelity after it falls below the critical value of 2/3. The Dzyaloshinski-Moriya interactions are observed to enhance the revivals in the average fidelity; this is an interesting result because alongside the Non-Markovian bath, the effect of the Dzyaloshinski-Moriya interaction, can be used to improve the efficiency of the quantum channel for teleporting quantum states. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Sudden death of entanglement at finite temperature [J].
Al-Qasimi, Asma ;
James, Daniel F. V. .
PHYSICAL REVIEW A, 2008, 77 (01)
[2]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[3]   Teleportation as a depolarizing quantum channel, relative entropy, and classical capacity [J].
Bowen, G ;
Bose, S .
PHYSICAL REVIEW LETTERS, 2001, 87 (26) :267901-1
[4]   Teleportation of bipartite states using a single entangled pair [J].
Cola, MM ;
Paris, MGA .
PHYSICS LETTERS A, 2005, 337 (1-2) :10-16
[5]   Non-Markovian Entanglement Dynamics in the Presence of System-Bath Coherence [J].
Dijkstra, Arend G. ;
Tanimura, Yoshitaka .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[6]   ENHANCED QUANTUM TELEPORTATION IN NON-MARKOVIAN ENVIRONMENTS [J].
Hao, Xiang ;
Zhu, Shiqun .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (05)
[7]   Enhancing the entanglement of a teleported state by local collective noises [J].
Hu, Xueyuan ;
Gu, Ying ;
Gong, Qihuang ;
Guo, Guangcan .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (07)
[8]   Entanglement teleportation via Werner states [J].
Lee, J ;
Kim, MS .
PHYSICAL REVIEW LETTERS, 2000, 84 (18) :4236-4239
[9]   Entanglement and teleportation through thermal equilibrium state of spins in the XXZ model [J].
Li, CX ;
Wang, CZ ;
Guo, GC .
OPTICS COMMUNICATIONS, 2006, 260 (02) :741-748
[10]   Entanglement fidelity of the standard quantum teleportation channel [J].
Li, Gang ;
Ye, Ming-Yong ;
Lin, Xiu-Min .
PHYSICS LETTERS A, 2013, 377 (23-24) :1531-1533