ON FREE ALGEBRAS IN VARIETIES GENERATED BY ITERATED SEMIDIRECT PRODUCTS OF SEMILATTICES

被引:0
作者
Horvath, Gabor [1 ]
Katai-Urban, Kamilla [2 ]
Pach, Peter Pal [3 ]
Pluhar, Gabriella [3 ]
Pongracz, Andras [4 ]
Szabo, Csaba [3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[3] Eotvos Lorand Univ, Dept Algebra & Number Theory, H-1117 Budapest, Hungary
[4] Cent European Univ, Budapest, Hungary
关键词
Free spectra; semigroup; semilattice; semidirect product; FREE SPECTRUM; COMBINATORIAL;
D O I
10.1142/S0218196712500634
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a new solution of the word problem of free algebras in varieties generated by iterated semidirect products of semilattices. As a consequence, we provide asymptotical bounds for free spectra of these varieties. In particular, each finite R-trivial (and, dually, each finite L-trivial) semigroup has a free spectrum whose logarithm is bounded above by a polynomial function.
引用
收藏
页数:11
相关论文
共 14 条
[1]   ON ITERATED SEMIDIRECT PRODUCTS OF FINITE SEMILATTICES [J].
ALMEIDA, J .
JOURNAL OF ALGEBRA, 1991, 142 (01) :239-254
[2]  
Almeida J., 1994, FINITE SEMIGROUPS UN
[3]  
Crvenkovic S., 1995, ALGEBR UNIV, V33, P470
[4]   ON FREE SPECTRA OF LOCALLY TESTABLE SEMIGROUP VARIETIES [J].
Dolinka, Igor .
GLASGOW MATHEMATICAL JOURNAL, 2011, 53 :623-629
[5]   On free spectra of finite completely regular semigroups and monoids [J].
Dolinka, Igor .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2009, 213 (10) :1979-1990
[6]  
Gratzer G., 1992, UNIVERSAL ALGEBRA QU, P57
[7]  
Higman G., 1965, P INT C THEOR GROUPS, P153
[8]   On the free spectrum of the variety generated by the combinatorial completely 0-simple semigroups [J].
Katai-Urban, Kamilla ;
Szabo, Csaba .
GLASGOW MATHEMATICAL JOURNAL, 2007, 49 :93-98
[9]   Free spectrum of the variety generated by the five element combinatorial Brandt semigroup [J].
Katai-Urban, Kamilla ;
Szabo, Csaba .
SEMIGROUP FORUM, 2006, 73 (02) :253-260
[10]   Congruence modular varieties with small free spectra [J].
Kearnes, KA .
ALGEBRA UNIVERSALIS, 1999, 42 (03) :165-181