Symmetries, reduction and relative equilibria for a gyrostat in the three-body problem

被引:6
|
作者
Mondéjar, F [1 ]
Vigueras, A [1 ]
Ferrer, S [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena 30203, Spain
关键词
gyrostat; reduction; relative equilibria; three-body problem;
D O I
10.1023/A:1013303002722
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The problem of three bodies when one of them is a gyrostat is considered. Using the symmetries of the system we carry out two reductions. Global considerations about the conditions for relative equilibria are made. Finally, we restrict to an approximated model of the dynamics and a complete study of the relative equilibria is made.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 50 条
  • [31] A Note on the Relative Equilibria Bifurcations in the -Body Problem
    CrInganu, Jenic
    Pasca, Daniel
    Stoica, Cristina
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2016, 28 (01) : 239 - 251
  • [32] The rectilinear three-body problem
    Victor Vladimirovich Orlov
    Anna V. Petrova
    Kiyotaka Tanikawa
    Masaya M. Saito
    Alija I. Martynova
    Celestial Mechanics and Dynamical Astronomy, 2008, 100 : 93 - 120
  • [33] The Parabolic Three-Body Problem
    C. Beaugé
    Celestial Mechanics and Dynamical Astronomy, 2004, 88 : 51 - 68
  • [34] The rectilinear three-body problem
    Orlov, Victor Vladimirovich
    Petrova, Anna V.
    Tanikawa, Kiyotaka
    Saito, Masaya M.
    Martynova, Alija I.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 100 (02) : 93 - 120
  • [35] The parabolic three-body problem
    Beaugé, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2004, 88 (01) : 51 - 68
  • [36] From the restricted to the full three-body problem
    Meyer, KR
    Schmidt, DS
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) : 2283 - 2299
  • [37] Stability of the classical type of relative equilibria of a rigid body in the J 2 problem
    Wang, Yue
    Xu, Shijie
    ASTROPHYSICS AND SPACE SCIENCE, 2013, 346 (02) : 443 - 461
  • [38] Cross sections in the three-body problem
    McCord C.
    Meyer K.R.
    Journal of Dynamics and Differential Equations, 2000, 12 (2) : 247 - 271
  • [39] Three-body problem in modified dynamics
    Shenavar, Hossein
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02)
  • [40] Three-body problem in modified dynamics
    Hossein Shenavar
    Celestial Mechanics and Dynamical Astronomy, 2023, 135