On the invalidity of Dirac's conjecture for a system with a singular higher-order Lagrangian

被引:2
|
作者
Jin, XY [1 ]
Li, ZP
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Beijing Polytech Univ, Dept Appl Phys, Beijing 100022, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/34/47/321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the canonical Nother's theorem and Poincare-Cartan integral invariant for a system with a singular higher-order Lagrangian, we present a counterexample with any higher-order derivatives, in which no linearizations of constraints are made to the system, showing that Dirac's conjecture is invalid.
引用
收藏
页码:10201 / 10207
页数:7
相关论文
共 50 条
  • [31] QUANTUM COSMOLOGY AND HIGHER-ORDER LAGRANGIAN THEORIES
    VANELST, H
    LIDSEY, JE
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (10) : 2483 - 2497
  • [32] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [33] DERIVATION OF SKYRME LAGRANGIAN AND HIGHER-ORDER TERM
    ITO, A
    PHYSICAL REVIEW D, 1990, 41 (09): : 2930 - 2932
  • [34] Higher-order signal processing with the Dirac operator
    Calmon, Lucille
    Schaub, Michael T.
    Bianconi, Ginestra
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 925 - 929
  • [35] Higher-order multipole expansion in the Dirac equation
    Marian, TA
    PHYSICAL REVIEW A, 1996, 53 (04): : 1992 - 1999
  • [36] Higher-order Dirac fermions in three dimensions
    Wu, Weikang
    Yu, Zhi-Ming
    Zhou, Xiaoting
    Zhao, Y. X.
    Yang, Shengyuan A.
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [37] The quantal Poincare-Cartan integral invariant for singular higher-order Lagrangian in field theories
    Zhang, Y
    Li, ZP
    EUROPEAN PHYSICAL JOURNAL C, 2005, 41 (02): : 257 - 263
  • [38] ON THE REDUCTION OF DEGENERATE LAGRANGIAN SYSTEMS OF HIGHER-ORDER
    DELEON, M
    GIRALDO, A
    RODRIGUES, PR
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (06): : 363 - 366
  • [39] LAGRANGIAN SUBMANIFOLDS AND HIGHER-ORDER MECHANICAL SYSTEMS
    DELEON, M
    LACOMBA, EA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 3809 - 3820
  • [40] NOETHER THEOREM IN HIGHER-ORDER LAGRANGIAN MECHANICS
    MIRON, R
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (07) : 1123 - 1146