On the invalidity of Dirac's conjecture for a system with a singular higher-order Lagrangian

被引:2
|
作者
Jin, XY [1 ]
Li, ZP
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Beijing Polytech Univ, Dept Appl Phys, Beijing 100022, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/34/47/321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the canonical Nother's theorem and Poincare-Cartan integral invariant for a system with a singular higher-order Lagrangian, we present a counterexample with any higher-order derivatives, in which no linearizations of constraints are made to the system, showing that Dirac's conjecture is invalid.
引用
收藏
页码:10201 / 10207
页数:7
相关论文
共 50 条
  • [21] Higher-order topological Dirac superconductors
    Zhang, Rui-Xing
    Hsu, Yi-Ting
    Das Sarma, S.
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [22] The quantal Poincaré-Cartan integral invariantfor singular higher-order Lagrangian in field theories
    Zhang Ying
    Li Ziping
    The European Physical Journal C - Particles and Fields, 2005, 41 : 257 - 263
  • [23] Perturbation of Higher-Order Singular Values
    Hackbusch, Wolfgang
    Kressner, Daniel
    Uschmajew, Andre
    SIAM JOURNAL ON APPLIED ALGEBRA AND GEOMETRY, 2017, 1 (01): : 374 - 387
  • [24] GAUGE GENERATOR IN DIRAC THEORY OF CONSTRAINED SYSTEM WITH SINGULAR HIGH-ORDER LAGRANGIAN
    LI, ZP
    XIE, YC
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1994, 21 (02) : 247 - 252
  • [25] Canonical quantal symmetry and conserved charges for a system with higher-order Lagrangian
    Li, ZP
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 27 (03) : 381 - 384
  • [26] On a Conjecture for a Higher-Order Rational Difference Equation
    Liao, Maoxin
    Tang, Xianhua
    Xu, Changjin
    ADVANCES IN DIFFERENCE EQUATIONS, 2009,
  • [27] On a Conjecture for a Higher-Order Rational Difference Equation
    Maoxin Liao
    Xianhua Tang
    Changjin Xu
    Advances in Difference Equations, 2009
  • [28] Higher-order Dirac semimetal in a photonic crystal
    Wang, Zihao
    Liu, Dongjue
    Teo, Hau Tian
    Wang, Qiang
    Xue, Haoran
    Zhang, Baile
    PHYSICAL REVIEW B, 2022, 105 (06)
  • [29] DYNAMIC CONNECTIONS AND HIGHER-ORDER LAGRANGIAN SYSTEMS
    OPRIS, D
    KLEPP, FC
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 42 (1-2): : 1 - 10
  • [30] A Lagrangian description of the higher-order Painlev, equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, N. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 746 - 755