On the invalidity of Dirac's conjecture for a system with a singular higher-order Lagrangian

被引:2
作者
Jin, XY [1 ]
Li, ZP
机构
[1] Peking Univ, Dept Phys, Beijing 100871, Peoples R China
[2] Beijing Polytech Univ, Dept Appl Phys, Beijing 100022, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 47期
关键词
D O I
10.1088/0305-4470/34/47/321
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the canonical Nother's theorem and Poincare-Cartan integral invariant for a system with a singular higher-order Lagrangian, we present a counterexample with any higher-order derivatives, in which no linearizations of constraints are made to the system, showing that Dirac's conjecture is invalid.
引用
收藏
页码:10201 / 10207
页数:7
相关论文
共 20 条
[1]   ON DIRAC CONJECTURE FOR SYSTEMS HAVING ONLY 1ST-CLASS CONSTRAINTS [J].
CABO, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (05) :629-638
[2]   AUGMENTED ALGORITHM FOR THE HAMILTONIAN [J].
CAWLEY, R .
PHYSICAL REVIEW D, 1980, 21 (10) :2988-2990
[3]   DETERMINATION OF THE HAMILTONIAN IN THE PRESENCE OF CONSTRAINTS [J].
CAWLEY, R .
PHYSICAL REVIEW LETTERS, 1979, 42 (07) :413-416
[4]   DYNAMICS OF GAUGE SYSTEMS AND DIRAC CONJECTURE [J].
COSTA, MEV ;
GIROTTI, HO ;
SIMOES, TJM .
PHYSICAL REVIEW D, 1985, 32 (02) :405-410
[5]  
Dirac P.A.M., 1964, LECT QUANTUM MECH
[6]   COMMENT ON CAWLEY COUNTEREXAMPLE TO A CONJECTURE OF DIRAC [J].
FRENKEL, A .
PHYSICAL REVIEW D, 1980, 21 (10) :2986-2987
[7]   LOCAL SYMMETRIES IN SYSTEMS WITH CONSTRAINTS [J].
GOGILIDZE, SA ;
SANADZE, VV ;
TKEBUCHAVA, FG ;
SUROVTSEV, YS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (19) :6509-6523
[8]   GAUGE-INVARIANCE AND DEGREE OF FREEDOM COUNT [J].
HENNEAUX, M ;
TEITELBOIM, C ;
ZANELLI, J .
NUCLEAR PHYSICS B, 1990, 332 (01) :169-188
[9]  
Henneaux M., 1992, Quantization of Gauge Systems
[10]  
Li Ziping, 1993, Chinese Physics Letters, V10, P68, DOI 10.1088/0256-307X/10/2/002