SocialWave: Visual Analysis of Spatio-temporal Diffusion of Information on Social Media

被引:14
|
作者
Sun, Guodao [1 ]
Tang, Tan [2 ]
Peng, Tai-Quan [3 ]
Liang, Ronghua [1 ]
Wu, Yingcai [2 ]
机构
[1] Zhejiang Univ Technol, Coll Informat Engieering, 288 Liuhe Rd, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci, State Key Lab CAD & CG, 866 Yuhangtang Rd, Hangzhou, Zhejiang, Peoples R China
[3] Michigan State Univ, Dept Commun, 404 Wilson Rd, E Lansing, MI 48824 USA
基金
中国国家自然科学基金;
关键词
Spatio-temporal visualization; information diffusion; social media visualization; VISUALIZATION; NETWORK; TIME;
D O I
10.1145/3106775
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rapid advancement of social media tremendously facilitates and accelerates the information diffusion among users around the world. How and to what extent will the information on social media achieve widespread diffusion across the world? How can we quantify the interaction between users from different geolocations in the diffusion process? How will the spatial patterns of information diffusion change over time? To address these questions, a dynamic social gravity model (SGM) is proposed to quantify the dynamic spatial interaction behavior among social media users in information diffusion. The dynamic SGM includes three factors that are theoretically significant to the spatial diffusion of information: geographic distance, cultural proximity, and linguistic similarity. Temporal dimension is also taken into account to help detect recency effect, and ground-truth data is integrated into the model to help measure the diffusion power. Furthermore, SocialWave, a visual analytic system, is developed to support both spatial and temporal investigative tasks. SocialWave provides a temporal visualization that allows users to quickly identify the overall temporal diffusion patterns, which reflect the spatial characteristics of the diffusion network. When a meaningful temporal pattern is identified, SocialWave utilizes a new occlusion-free spatial visualization, which integrates a node-link diagram into a circular cartogram for further analysis. Moreover, we propose a set of rich user interactions that enable in-depth, multi-faceted analysis of the diffusion on social media. The effectiveness and efficiency of the mathematical model and visualization system are evaluated with two datasets on social media, namely, Ebola Epidemics and Ferguson Unrest.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Visual Analytics Methods for Categoric Spatio-Temporal Data
    von Landesberger, T.
    Bremm, Sebastian
    Andrienko, Natalia
    Andrienko, Gennady
    Tekusova, Maria
    2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2012, : 183 - 192
  • [22] A topic modeling framework for spatio-temporal information management
    Asghari, Mohsen
    Sierra-Sosa, Daniel
    Elmaghraby, Adel S.
    INFORMATION PROCESSING & MANAGEMENT, 2020, 57 (06)
  • [23] Discovery of local topics by using latent spatio-temporal relationships in geo-social media
    Kim, Kyoung-Sook
    Kojima, Isao
    Ogawa, Hirotaka
    INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (09) : 1899 - 1922
  • [24] EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption
    Yong Xiao
    Kaihong Zheng
    Supaporn Lonapalawong
    Wenjie Lu
    Zexian Chen
    Bin Qian
    Tianye Zhang
    Xin Wang
    Wei Chen
    Frontiers of Computer Science, 2022, 16
  • [25] Spatio-Temporal analysis of mobility strategies of individuals in urban neighborhoods
    Aguilera-Saez, Felipe
    Rojas, Carolina
    Salas-Olmedo, Henar
    Antonio Carrasco, Juan
    REVISTA DE TRANSPORTE Y TERRITORIO, 2020, (22): : 205 - 229
  • [26] EcoVis:visual analysis of industrial-level spatio-temporal correlations in electricity consumption
    Yong XIAO
    Kaihong ZHENG
    Supaporn LONAPALAWONG
    Wenjie LU
    Zexian CHEN
    Bin QIAN
    Tianye ZHANG
    Xin WANG
    Wei CHEN
    Frontiers of Computer Science, 2022, 16 (02) : 98 - 108
  • [27] EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption
    Xiao, Yong
    Zheng, Kaihong
    Lonapalawong, Supaporn
    Lu, Wenjie
    Chen, Zexian
    Qian, Bin
    Zhang, Tianye
    Wang, Xin
    Chen, Wei
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [28] Visual Analysis of Spatio-Temporal Event Predictions: Investigating the Spread Dynamics of Invasive Species
    Seebacher, Daniel
    Hauessler, Johannes
    Hundt, Michael
    Stein, Manuel
    Mueller, Hannes
    Engelke, Ulrich
    Keim, Daniel A.
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 497 - 509
  • [29] Spatio-temporal visual analytics: a vision for 2020s
    Andrienko, Natalia
    Andrienko, Gennady
    JOURNAL OF SPATIAL INFORMATION SCIENCE, 2020, (20): : 87 - 95
  • [30] A Characterization of Interactive Visual Data Stories With a Spatio-Temporal Context
    Mayer, Benedikt
    Steinhauer, Nastasja
    Preim, Bernhard
    Meuschke, Monique
    COMPUTER GRAPHICS FORUM, 2023, 42 (06)