Fractional diffusion on circulant networks: emergence of a dynamical small world

被引:28
|
作者
Riascos, A. P. [1 ]
Mateos, Jose L. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2015年
关键词
rigorous results in statistical mechanics; transport properties (theory); random graphs; networks; diffusion; COMPLEX NETWORKS; LEVY-WALK; ANOMALOUS DIFFUSION; SCALING LAWS; PATTERNS; FLIGHTS; TIME; TRANSPORT; MOVEMENT; MOBILITY;
D O I
10.1088/1742-5468/2015/07/P07015
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, we study fractional random walks on networks defined from the equivalent of the fractional diffusion equation in graphs. We explore this process analytically in circulant networks; in particular, interacting cycles and limit cases such as a ring and a complete graph. From the spectra and the eigenvectors of the Laplacian matrix, we deduce explicit results for different quantities that characterize this dynamical process. We obtain analytical expressions for the fractional transition matrix, the fractional degrees and the average probability of return of the random walker. Also, we discuss the Kemeny constant, which gives the average number of steps necessary to reach any site of the network. Throughout this work, we analyze the mechanisms behind fractional transport on circulant networks and how this long-range process dynamically induces the small-world property in different structures.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] A circulant preconditioner for fractional diffusion equations
    Lei, Siu-Long
    Sun, Hai-Wei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 : 715 - 725
  • [2] Circulant Graph Modeling Deterministic Small-World Networks
    Zhao, Chenggui
    INTELLIGENT COMPUTING AND INFORMATION SCIENCE, PT II, 2011, 135 : 124 - 127
  • [3] Fractional dynamics on networks: Emergence of anomalous diffusion and Levy flights
    Riascos, A. P.
    Mateos, Jose L.
    PHYSICAL REVIEW E, 2014, 90 (03)
  • [4] Synchronization in small-world dynamical networks
    Wang, XF
    Chen, GR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (01): : 187 - 192
  • [5] Emergence of Small World Behaviors in Optical Transport Networks
    Priyanka, N.
    Janhavi, S.
    Subramanya, Prajwal
    Naveen, L.
    Nyamangoudar, Rahul
    Routray, Sudhir K.
    Suganya, J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTING AND INFORMATICS (ICICI 2017), 2017, : 783 - 786
  • [6] Adaptive Synchronization in Small-World Dynamical Networks
    邹艳丽
    朱杰
    罗晓曙
    JournalofShanghaiJiaotongUniversity, 2007, (02) : 211 - 215
  • [7] Circulant preconditioners for a kind of spatial fractional diffusion equations
    Zhi-Wei Fang
    Michael K. Ng
    Hai-Wei Sun
    Numerical Algorithms, 2019, 82 : 729 - 747
  • [8] Circulant preconditioners for a kind of spatial fractional diffusion equations
    Fang, Zhi-Wei
    Ng, Michael K.
    Sun, Hai-Wei
    NUMERICAL ALGORITHMS, 2019, 82 (02) : 729 - 747
  • [9] Characterizing the synchronizability of small-world dynamical networks
    Lü, JH
    Yu, XH
    Chen, GR
    Cheng, DZ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2004, 51 (04) : 787 - 796
  • [10] Adaptive synchronization in small-world dynamical networks
    Dept. of Electronic Eng., Shanghai Jiaotong Univ., Shanghai 200240, China
    不详
    J. Shanghai Jiaotong Univ. Sci., 2007, 2 (211-215):