A novel gene expression index (GEI) with software support for comparing microarray gene signatures

被引:1
|
作者
Khan, Haseeb Ahmad [1 ]
机构
[1] King Saud Univ, Dept Biochem, Coll Sci, Analyt & Mol Biosci Res Grp, Riyadh 11451, Saudi Arabia
关键词
Microarray; Gene signatures; Statistical comparisons; Algorithm; Software; Gene expression index; SET ANALYSIS; IDENTIFICATION; STATISTICS; PREDICTION; PLATFORMS; PROFILE; CANCER;
D O I
10.1016/j.gene.2012.09.101
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This study was aimed to examine the validity of commonly used statistical tests for comparison of expression data from simulated and real gene signatures as well as pathway-characterized gene sets. A novel algorithm based on 10 sub-gradations (5 for up- and 5 for down-regulation) of fold-changes has been designed and testified using an Excel add-in software support. Our findings showed the limitations of conventional statistics for comparing the microarray gene expression data. However, the newly introduced Gene Expression Index (GEI) appeared to be more robust and straightforward for two-group comparison of normalized data. The software automation simplifies the task and the results are displayed in a comprehensive format including a color-coded bar showing the intensity of cumulative gene expression. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [41] A Novel Hybrid Method for Classification of Tumor in Gene Expression Based Central Nervous System Microarray Data
    Singh, W. Jai
    Kavitha, R. K.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 121 - 125
  • [42] Gene expression microarray technologies in the development of new therapeutic agents
    Clarke, PA
    te Poele, R
    Workman, P
    EUROPEAN JOURNAL OF CANCER, 2004, 40 (17) : 2560 - 2591
  • [43] Exploiting the Accumulated Evidence for Gene Selection in Microarray Gene Expression Data
    Prat-Masramon, Gabriel
    Belanche-Munoz, Lluis A.
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 989 - +
  • [44] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    IEEE ACCESS, 2019, 7 : 78533 - 78548
  • [45] Gene Expression Signatures Identify Novel Therapeutics for Metastatic Pancreatic Neuroendocrine Tumors
    Scott, Aaron T.
    Weitz, Michelle
    Breheny, Patrick J.
    Ear, Po Hien
    Darbro, Benjamin
    Brown, Bart J.
    Braun, Terry A.
    Li, Guiying
    Umesalma, Shaikamjad
    Kaemmer, Courtney A.
    Maharjan, Chandra K.
    Quelle, Dawn E.
    Bellizzi, Andrew M.
    Chandrasekharan, Chandrikha
    Dillon, Joseph S.
    O'Dorisio, Thomas M.
    Howe, James R.
    CLINICAL CANCER RESEARCH, 2020, 26 (08) : 2011 - 2021
  • [46] R2KS: A Novel Measure for Comparing Gene Expression Based on Ranked Gene Lists
    Ni, Shengyu
    Vingron, Martin
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (06) : 766 - 775
  • [47] Classification across gene expression microarray studies
    Buness, Andreas
    Ruschhaupt, Markus
    Kuner, Ruprecht
    Tresch, Achim
    BMC BIOINFORMATICS, 2009, 10
  • [48] Microarray Data Analysis of Gene Expression Evolution
    Lin, Honghuang
    GENE REGULATION AND SYSTEMS BIOLOGY, 2009, 3 : 211 - 214
  • [49] Analysis of microarray experiments of gene expression profiling
    Tarca, Adi L.
    Romero, Roberto
    Draghici, Sorin
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2006, 195 (02) : 373 - 388
  • [50] Microarray gene expression profiling in meningiomas and schwannomas
    Martinez-Glez, V.
    Franco-Hernandez, C.
    Rey, J. A.
    CURRENT MEDICINAL CHEMISTRY, 2008, 15 (08) : 826 - 833