A novel gene expression index (GEI) with software support for comparing microarray gene signatures

被引:1
|
作者
Khan, Haseeb Ahmad [1 ]
机构
[1] King Saud Univ, Dept Biochem, Coll Sci, Analyt & Mol Biosci Res Grp, Riyadh 11451, Saudi Arabia
关键词
Microarray; Gene signatures; Statistical comparisons; Algorithm; Software; Gene expression index; SET ANALYSIS; IDENTIFICATION; STATISTICS; PREDICTION; PLATFORMS; PROFILE; CANCER;
D O I
10.1016/j.gene.2012.09.101
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
This study was aimed to examine the validity of commonly used statistical tests for comparison of expression data from simulated and real gene signatures as well as pathway-characterized gene sets. A novel algorithm based on 10 sub-gradations (5 for up- and 5 for down-regulation) of fold-changes has been designed and testified using an Excel add-in software support. Our findings showed the limitations of conventional statistics for comparing the microarray gene expression data. However, the newly introduced Gene Expression Index (GEI) appeared to be more robust and straightforward for two-group comparison of normalized data. The software automation simplifies the task and the results are displayed in a comprehensive format including a color-coded bar showing the intensity of cumulative gene expression. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:82 / 88
页数:7
相关论文
共 50 条
  • [31] Blood gene expression signatures predict exposure levels
    Bushel, P. R.
    Heinloth, A. N.
    Li, J.
    Huang, L.
    Chou, J. W.
    Boorman, G. A.
    Malarkey, D. E.
    Houle, C. D.
    Ward, S. M.
    Wilson, R. E.
    Fannin, R. D.
    Russo, M. W.
    Watkins, P. B.
    Tennant, R. W.
    Paules, R. S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (46) : 18211 - 18216
  • [32] Novel changes in gene expression following axotomy of a sympathetic ganglion: A microarray analysis
    Boeshore, KL
    Schreiber, RC
    Vaccariello, SA
    Sachs, HH
    Salazar, R
    Lee, J
    Ratan, RR
    Leahy, P
    Zigmond, RE
    JOURNAL OF NEUROBIOLOGY, 2004, 59 (02): : 216 - 235
  • [33] The gene expression signatures of melanoma progression
    Haqq, C
    Nosrati, M
    Sudilovsky, D
    Crothers, J
    Khodabakhsh, D
    Pulliam, BL
    Federman, S
    Miller, JR
    Allen, RE
    Singer, MI
    Leong, SPL
    Ljung, BM
    Sagebiel, RW
    Kashani-Sabet, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) : 6092 - 6097
  • [34] New Gene Selection Method Using Gene Expression Programing Approach on Microarray Data Sets
    Alanni, Russul
    Hou, Jingyu
    Azzawi, Hasseeb
    Xiang, Yong
    COMPUTER AND INFORMATION SCIENCE (ICIS 2018), 2019, 791 : 17 - 31
  • [35] Gene Network Modules-Based Liner Discriminant Analysis of Microarray Gene Expression Data
    Hu, Pingzhao
    Bull, Shelley
    Jiang, Hui
    BIOINFORMATICS RESEARCH AND APPLICATIONS, 2011, 6674 : 286 - +
  • [36] A Study of Cancer Microarray Gene Expression Profile: Objectives and Approaches
    Alshamlan, Hala M.
    Badr, Ghada H.
    Alohali, Yousef
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL II, 2013, : 1324 - 1329
  • [37] A New Support Vector Machine for Microarray Classification and Adaptive Gene Selection
    Li, Juntao
    Jia, Yingmin
    Du, Junping
    Yu, Fashan
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5410 - +
  • [38] Data mining for gene expression profiles from DNA, microarray
    Cho, SB
    Won, HH
    INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2003, 13 (06) : 593 - 608
  • [39] Gene expression microarray classification using PCA-BEL
    Lotfi, Ehsan
    Keshavarz, Azita
    COMPUTERS IN BIOLOGY AND MEDICINE, 2014, 54 : 180 - 187
  • [40] Microarray analysis of gene expression in the ovarian cancer cell line HO-8910 with silencing of the ZNF217 gene
    Sun, Guiqin
    Qin, Jingxia
    Qiu, Yuwen
    Gao, Yunfei
    Yu, Yanhong
    Deng, Qinkai
    Zhong, Mei
    MOLECULAR MEDICINE REPORTS, 2009, 2 (05) : 851 - 855