TEST FUNCTIONS IN CONSTRAINED INTERPOLATION

被引:5
作者
Dritschel, Michael A. [1 ]
Pickering, James [1 ]
机构
[1] Newcastle Univ, Dept Math, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
Interpolation; realizations; Nevanlinna-Pick; test functions; NEVANLINNA-PICK INTERPOLATION;
D O I
10.1090/S0002-9947-2012-05515-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a set of test functions for H-1(infinity), the algebra of bounded holomorphic functions on the disk with first derivative equal to 0; whose interpolation problem was studied by Davidson, Paulsen; Raghupathi and Singh (2009). We show that this set of test functions is minimal by relating these ideas to realization and interpolation problems.
引用
收藏
页码:5589 / 5604
页数:16
相关论文
共 11 条
[1]  
ABRAHAMSE MB, 1979, MICH MATH J, V26, P195
[2]  
Agler J., 2002, GRADUATE STUDIES MAT
[3]  
Agler Jim, 2008, MEMOIRS AM MATH SOC, V191, p[viii, 159]
[4]   Reproducing kernels for Hardy spaces on multiply connected domains [J].
Ball, JA ;
Clancey, KF .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 25 (01) :35-57
[5]  
Ball Joseph A., 2008, ARXIV08092345
[6]   A Constrained Nevanlinna-Pick Interpolation Problem [J].
Davidson, Kenneth R. ;
Paulsen, Vern I. ;
Raghupathi, Mrinal ;
Singh, Dinesh .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) :709-732
[7]   The failure of rational dilation on a triply connected domain [J].
Dritschel, MA ;
McCullough, S .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :873-918
[8]  
McCullough S, 2002, INDIANA U MATH J, V51, P479
[9]   Counterexamples to Rational Dilation on Symmetric Multiply Connected Domains [J].
Pickering, James .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (01) :55-95
[10]  
Raghupathi M, 2009, INTEGR EQUAT OPER TH, V63, P103, DOI 10.1007/s00020-008-1639-9