Multifunctional Self-Powered E-Skin with Tactile Sensing and Visual Warning for Detecting Robot Safety

被引:36
|
作者
Wang, Feng-Xia [1 ]
Wang, Ming-Jiong [1 ]
Liu, Hui-Cong [1 ]
Zhang, Yun-Lin [1 ]
Lin, Qi-Hang [1 ]
Chen, Tao [1 ]
Sun, Li-Ning [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Jiangsu Prov Key Lab Adv Robot, Suzhou 215131, Peoples R China
来源
ADVANCED MATERIALS INTERFACES | 2020年 / 7卷 / 19期
基金
中国国家自然科学基金;
关键词
multifunctional electronic skin; organic electrochromic devices; robot safety warning; self-powered sensor; triboelectric sensors; TRIBOELECTRIC NANOGENERATOR; PRESSURE DETECTION; CONDUCTIVE RUBBER; SENSOR; TRANSPARENT; FABRICATION; CAMOUFLAGE; FILMS;
D O I
10.1002/admi.202000536
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible electronic skins (e-skins) are widely applied in human activities monitoring, medical health, and robotic perception. However, most of the reported e-skins only focus on the physical force sensing. Herein, a novel multifunctional e-skin possessing physical force sensing and real-time visualization is proposed. The vertical-separation triboelectric sensor is used as the tactile sensing units, showing excellent performance with the open-circuit voltage (V-0) of 376.8 V, the short-circuit (I-s) of 1.02 mu A, and the maximum output power density of 7.225 W m(-2), which also can carry out pressure detection with a wide detection range from 55.5 pa to 14 Kpa, a high sensitivity of 57.76 mV pa(-1), and a fast response time of 5.6 ms. The electrochromic devices as the visualization window shows the excellent stability and the low driving voltage. This e-skin can detect the instantaneous external force applied on the human arm and robotic arm and simultaneously shows the colors varying from light green to dark blue when experiencing the applied force. The proposed e-skin shows a promising solution of realizing both the digitized physical force sensing and the direct visualization, which can greatly enhance the safety precaution in various fields, such as robotic production line.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Recent progress in self-powered multifunctional e-skin for advanced applications
    Chen, Yunfeng
    Gao, Zhengqiu
    Zhang, Fangjia
    Wen, Zhen
    Sun, Xuhui
    EXPLORATION, 2022, 2 (01):
  • [2] Bio-inspired microstructures for high-performance and self-powered E-skin technologies
    Neamah, Husam A.
    Mousa, Al-Gburi
    CHEMICAL ENGINEERING JOURNAL ADVANCES, 2024, 20
  • [3] Tertiary nanocomposite-based self-powered E-skin as energy harvester and electronic nose
    Punetha, Deepak
    Kumar, Ajay
    Pandey, Saurabh Kumar
    Chakrabarti, Subhananda
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (02)
  • [4] 3D printed stretchable smart fibers and textiles for self-powered e-skin
    Chen, Yuxin
    Deng, Zhirong
    Ouyang, Ri
    Zheng, Renhao
    Jiang, Zhiqiang
    Bai, Hua
    Xue, Hao
    NANO ENERGY, 2021, 84
  • [5] Fully Organic Self-Powered Electronic Skin with Multifunctional and Highly Robust Sensing Capability
    Song, Lijuan
    Zhang, Zheng
    Xun, Xiaochen
    Xu, Liangxu
    Gao, Fangfang
    Zhao, Xuan
    Kang, Zhuo
    Liao, Qingliang
    Zhang, Yue
    RESEARCH, 2021, 2021
  • [6] Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing
    Yao, Guo
    Xu, Liang
    Cheng, Xiaowen
    Li, Yangyang
    Huang, Xin
    Guo, Wei
    Liu, Shaoyu
    Wang, Zhong Lin
    Wu, Hao
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (06)
  • [7] Stretchable hybrid electronic network-based e-skin for proximity and multifunctional tactile sensing
    Wen, Xiaohong
    Zhao, Zengcai
    Chen, Yuchang
    Shan, Xinzhi
    Zhao, Xuefeng
    Gao, Xiumin
    Zhuang, Songlin
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (05)
  • [8] Multifunctional organohydrogels enabling sensitive strain sensing and self-powered triboelectricity
    Wei, Xinyu
    Fang, Hongli
    Cui, Zhiyue
    He, Shu
    Shao, Wei
    CHEMICAL ENGINEERING JOURNAL, 2024, 499
  • [9] Magnetoelectric soft composites with a self-powered tactile sensing capacity
    Zhang, Xuan
    Ai, Jingwei
    Ma, Zheng
    Du, Zhuolin
    Chen, Dezhi
    Zou, Ruiping
    Su, Bin
    NANO ENERGY, 2020, 69 (69)
  • [10] Transparent and stretchable triboelectric nanogenerator for self-powered tactile sensing
    Zhao, Gengrui
    Zhang, Yawen
    Shi, Nan
    Liu, Zhirong
    Zhang, Xiaodi
    Wu, Mengqi
    Pan, Caofeng
    Liu, Hongliang
    Li, Linlin
    Wang, Zhong Lin
    NANO ENERGY, 2019, 59 : 302 - 310