共 50 条
Observations and modeling of a clumpy galaxy at z=1.6 - Spectroscopic clues to the origin and evolution of chain galaxies
被引:111
作者:
Bournaud, F.
[1
,2
]
Daddi, E.
[1
,2
]
Elmegreen, B. G.
[3
]
Elmegreen, D. M.
[4
]
Nesvadba, N.
[5
]
Vanzella, E.
[7
]
Di Matteo, P.
[5
,6
]
Le Tiran, L.
[5
]
Lehnert, M.
[5
]
Elbaz, D.
[1
,2
]
机构:
[1] CEA, IRFU, SAp, F-91191 Gif Sur Yvette, France
[2] Univ Paris Diderot, CNRS, CEA Saclay, Lab AIM, Paris, France
[3] TJ Watson Res Ctr, IBM Res Div, Yorktown Hts, NY 10598 USA
[4] Vassar Coll, Dept Phys & Astron, Poughkeepsie, NY 12604 USA
[5] GEPI, Observ Paris, F-92195 Meudon, France
[6] LERMA, Observ Paris, F-75014 Paris, France
[7] Osserv Astron Trieste, INAF, I-40131 Trieste, Italy
关键词:
galaxies : formation;
galaxies : kinematics and dynamics;
galaxies : evolution;
galaxies : interactions;
D O I:
10.1051/0004-6361:20079250
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We investigate the properties of a clump-cluster galaxy at redshift 1.57. In optical observations, the morphology of this galaxy is dominated by eight star-forming clumps, and its photometric properties are typical of most clump-cluster and chain galaxies. Its complex asymmetrical morphology has led to the suggestion that this system is a group merger of several initially separate protogalaxies. We performed Ha integral field spectroscopy of this system using SINFONI on VLT UT4. These observations reveal a large-scale velocity gradient throughout the system, but with large local kinematic disturbances. Using a numerical model of gas-rich disk fragmentation, we find that clump interactions and migration can explain the observed disturbed rotation. On the other hand, the global rotation would not be expected for a multiply merging system. We also find that this system follows the relations of stellar mass versus metallicity, star formation rate, and size that are expected for a disk at this redshift. Furthermore, the galaxy exhibits a disk-like radial metallicity gradient. A formation scenario of internal disk fragmentation is therefore the most likely one. A red and metallic central concentration appears to be a bulge in this proto-spiral clumpy galaxy. A chain galaxy at redshift 2.07 in the same field also shows disk-like rotation. Such systems are likely progenitors of present-day bright spiral galaxies, which shape their exponential disks through clump migration and disruption, a process that in turn fuels their bulges. Our results show that disturbed morphologies and kinematics are not necessarily signs of galaxy mergers and interactions, but may instead be produced by the internal evolution of primordial disks.
引用
收藏
页码:741 / 753
页数:13
相关论文