Moduli spaces of toric manifolds

被引:10
|
作者
Pelayo, A. [1 ,2 ]
Pires, A. R. [3 ]
Ratiu, T. S. [4 ,5 ]
Sabatini, S. [4 ]
机构
[1] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[4] Ecole Polytech Fed Lausanne, Sect Math, Stn 8, CH-1015 Lausanne, Switzerland
[5] Ecole Polytech Fed Lausanne, Bernoulli Ctr, Stn 8, CH-1015 Lausanne, Switzerland
关键词
Toric manifold; Delzant polytope; Moduli space; Metric space; CONVEXITY;
D O I
10.1007/s10711-013-9858-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a distance on the moduli space of symplectic toric manifolds of dimension four. Then we study some basic topological properties of this space, in particular, path-connectedness, compactness, and completeness. The construction of the distance is related to the Duistermaat-Heckman measure and the Hausdorff metric. While the moduli space, its topology and metric, may be constructed in any dimension, the tools we use in the proofs are four-dimensional, and hence so is our main result.
引用
收藏
页码:323 / 341
页数:19
相关论文
共 50 条