Evolution of Physical and Electronic Structures of Bilayer Graphene upon Chemical Functionalization

被引:35
作者
Wang, Qing Hua [1 ]
Shih, Chih-Jen [1 ]
Paulus, Geraldine L. C. [1 ]
Strano, Michael S. [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
RAMAN-SPECTROSCOPY; EPITAXIAL GRAPHENE; ROOM-TEMPERATURE; BANDGAP; CHEMISTRY; GRAPHITE; DISORDER; SINGLE; LITHOGRAPHY; TRANSISTORS;
D O I
10.1021/ja4083914
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chemical behavior of bilayer graphene under strong covalent and noncovalent functionalization is relatively unknown compared to monolayer graphene, which has been far more widely studied. Bilayer graphene is significantly less chemically reactive than monolayer graphene, making it more challenging to study its chemistry in detail. However, bilayer graphene is increasingly attractive for electronic applications rather than monolayer graphene because of its electric-field-controllable band gap, and there is a need for a greater understanding of its chemical functionalization. In this paper, we study the covalent and noncovalent functionalization of bilayer graphene using an electrochemical process with aryl diazonium salts in the high conversion regime (D/G ratio >1), and we use Raman spectroscopic mapping and conductive atomic force microscopy (cAFM) to study the resulting changes in the physical and electronic structures. Covalent functionalization at high chemical conversion induces distinct changes in the Raman spectrum of bilayer graphene including the broadening and shift in position of the split G peak. Also, the D peak becomes active with four components. We report for the first time that the broadening of the 2D(22) and 2D(21) components is a distinct indicator of covalent functionalization, whereas the decrease in intensity of the 2D(11) and 2D(12) peaks corresponds to doping. Conductive AFM imaging shows physisorbed species from noncovalent functionalization can be removed by mechanical and electrical influence from the MM tip, and that changes in conductivity due to functionalization are inhomogeneous. These results allow one to distinguish covalent from noncovalent chemistry as a guide for further studies of the chemistry of bilayer graphene.
引用
收藏
页码:18866 / 18875
页数:10
相关论文
共 59 条
  • [1] Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
  • [2] Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
  • [3] Electron-electron interactions and doping dependence of the two-phonon Raman intensity in graphene
    Basko, D. M.
    Piscanec, S.
    Ferrari, A. C.
    [J]. PHYSICAL REVIEW B, 2009, 80 (16)
  • [4] Chemical Modification of Epitaxial Graphene: Spontaneous Grafting of Aryl Groups
    Bekyarova, Elena
    Itkis, Mikhail E.
    Ramesh, Palanisamy
    Berger, Claire
    Sprinkle, Michael
    de Heer, Walt A.
    Haddon, Robert C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (04) : 1336 - +
  • [5] Observation of Raman G-band splitting in top-doped few-layer graphene
    Bruna, Matteo
    Borini, Stefano
    [J]. PHYSICAL REVIEW B, 2010, 81 (12):
  • [6] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [7] Doping dependence of the Raman peaks intensity of graphene close to the Dirac point
    Casiraghi, C.
    [J]. PHYSICAL REVIEW B, 2009, 80 (23):
  • [8] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [9] Phonon renormalization in doped bilayer graphene
    Das, A.
    Chakraborty, B.
    Piscanec, S.
    Pisana, S.
    Sood, A. K.
    Ferrari, A. C.
    [J]. PHYSICAL REVIEW B, 2009, 79 (15)
  • [10] Boron nitride substrates for high-quality graphene electronics
    Dean, C. R.
    Young, A. F.
    Meric, I.
    Lee, C.
    Wang, L.
    Sorgenfrei, S.
    Watanabe, K.
    Taniguchi, T.
    Kim, P.
    Shepard, K. L.
    Hone, J.
    [J]. NATURE NANOTECHNOLOGY, 2010, 5 (10) : 722 - 726