A data-driven approach for clustering scatter values in hybrid-polarimetric SAR images

被引:7
作者
Aswatha, Shashaank Mattur [1 ]
Mukhopadhyay, Jayanta [1 ]
Biswas, Prabir [2 ]
Aikat, Subhas [1 ]
Misra, Arundhati [3 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Comp Sci & Engn, Kharagpur, W Bengal, India
[2] Indian Inst Technol Kharagpur, Dept Elect & Elect Commun & Engn, Kharagpur, W Bengal, India
[3] Indian Space Res Org, Space Applicat Ctr, Ahmadabad, Gujarat, India
关键词
UNSUPERVISED CLASSIFICATION; DECOMPOSITION; COMPACT; MODEL;
D O I
10.1080/01431161.2018.1562263
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this article, we discuss clustering of hybrid-polarimetric SAR images using finite mixture model framework. We use, particularly, Gaussian mixture model to fit the distribution of data. As features of clustering technique, we use three decomposition techniques of hybrid-polarimetric synthetic aperture radar (SAR) data, namely, , , and decompositions. The three pseudo-power components that are derived from these decompositions are clustered using data-driven multivariate Gaussian modelling. These clustered images would give an idea of land use in terms of three broad classes, viz., surface, volume, and dihedral, which are defined with reference to SAR scattering characteristics. We show the efficiency of this technique by successfully clustering the data where dominant scatter-based clustering could not properly distinguish the scattering phenomenon. We also discuss an incremental directional smoothing for speckle suppression of polarimetric SAR images. For experiments, we use hybrid-polarimetric C-band SAR data from Indian Space Research Organisation's Radar Imaging Satellite (RISAT-1). We also show the results on a simulated hybrid-polarimetric SAR image from Advanced Land Observing Satellite's (ALOS-1) full-polarimetric SAR data. From our experiments, it is seen that the proposed technique performs consistently and satisfactorily in clustering hybrid-polarimetric SAR data on different decomposition techniques.
引用
收藏
页码:4264 / 4289
页数:26
相关论文
共 56 条
[1]  
Abramson N., 2006, PATTERN RECOGN, V103, P886
[2]   Bilateral Distance Based Filtering for Polarimetric SAR Data [J].
Alonso-Gonzalez, Alberto ;
Lopez-Martinez, Carlos ;
Salembier, Philippe ;
Deng, Xinping .
REMOTE SENSING, 2013, 5 (11) :5620-5641
[3]  
Anfinsen S. N., 2007, P POLINSAR WORKSH FR
[4]  
[Anonymous], 2018, ALOS DATA
[5]  
[Anonymous], 2014, MEAS SCI REV, DOI DOI 10.48550/ARXIV.1608.01993
[6]   VECTOR MEDIAN FILTERS [J].
ASTOLA, J ;
HAAVISTO, P ;
NEUVO, Y .
PROCEEDINGS OF THE IEEE, 1990, 78 (04) :678-689
[7]  
Aswatha S. M., 2011, Proceedings of the 2011 Third National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG 2011), P122, DOI 10.1109/NCVPRIPG.2011.33
[8]  
Aswatha S. M., 2017, P NAT C COMP VIS PAT
[9]   A new compact polarimetric SAR decomposition technique [J].
Bhattacharya, A. ;
De, S. ;
Muhuri, A. ;
Surendar, M. ;
Venkataraman, G. ;
Das, A. K. .
REMOTE SENSING LETTERS, 2015, 6 (12) :914-923
[10]   Compact polarimetry overview and applications assessment [J].
Charbonneau, F. J. ;
Brisco, B. ;
Raney, R. K. ;
McNairn, H. ;
Liu, C. ;
Vachon, P. W. ;
Shang, J. ;
DeAbreu, R. ;
Champagne, C. ;
Merzouki, A. ;
Geldsetzer, T. .
CANADIAN JOURNAL OF REMOTE SENSING, 2010, 36 :S298-S315