Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples

被引:27
作者
Chakraborty, Ishita [1 ]
Yablon, Dalia G. [1 ]
机构
[1] ExxonMobil Res & Engn Co, Corp Strateg Res, Annandale, NJ 08801 USA
关键词
ATOMIC-FORCE MICROSCOPY;
D O I
10.1088/0957-4484/24/47/475706
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bimodal atomic force microscopy (AFM) is a recently developed technique of dynamic AFM where a higher eigenmode of the cantilever is simultaneously excited along with the fundamental eigenmode. The effects of different operating parameters while imaging an impact copolymer blend of polypropylene (PP) and ethylene-propylene (E-P) rubber in bimodal mode are explored through experiments and numerical simulations. The higher mode amplitude and phase contrasts between the two components of the sample reverse at different points as the free amplitude of the higher eigenmode is increased. Three different regimes are identified experimentally depending on the relative contrast between the PP and the E-P rubber. It is observed that the kinetic energy and free air drive input energy of the two cantilever eigenmodes play a role in determining the regimes of operation. Numerical simulations conducted with appropriate tip-sample interaction forces support the experimental results. An understanding of these regimes and the associated cantilever dynamics will guide a rational approach towards selecting appropriate operating parameters.
引用
收藏
页数:7
相关论文
共 23 条
  • [1] Dual frequency atomic force microscopy on charged surfaces
    Baumann, Maximilian
    Stark, Robert W.
    [J]. ULTRAMICROSCOPY, 2010, 110 (06) : 578 - 581
  • [2] CALCULATION OF THERMAL NOISE IN ATOMIC-FORCE MICROSCOPY
    BUTT, HJ
    JASCHKE, M
    [J]. NANOTECHNOLOGY, 1995, 6 (01) : 1 - 7
  • [3] Chakraborty I, 2013, P MAT RES SOC SPRING
  • [4] Mapping of conservative and dissipative interactions in bimodal atomic force microscopy using open-loop and phase-locked-loop control of the higher eigenmode
    Chawla, Gaurav
    Solares, Santiago D.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (07)
  • [5] Nanotomography with enhanced resolution using bimodal atomic force microscopy
    Dietz, C.
    Zerson, M.
    Riesch, C.
    Gigler, A. M.
    Stark, R. W.
    Rehse, N.
    Magerle, R.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (14)
  • [6] Nanomechanical coupling enables detection and imaging of 5 nm superparamagnetic particles in liquid
    Dietz, Christian
    Herruzo, Elena T.
    Lozano, Jose R.
    Garcia, Ricardo
    [J]. NANOTECHNOLOGY, 2011, 22 (12)
  • [7] Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: comparison of phase contrasts in single and dual mode operation
    Ebeling, Daniel
    Solares, Santiago D.
    [J]. NANOTECHNOLOGY, 2013, 24 (13)
  • [8] Identification of nanoscale dissipation processes by dynamic atomic force microscopy
    Garcia, R.
    Gomez, C. J.
    Martinez, N. F.
    Patil, S.
    Dietz, C.
    Magerle, R.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (01)
  • [9] Nanomechanical mapping of soft matter by bimodal force microscopy
    Garcia, Ricardo
    Proksch, Roger
    [J]. EUROPEAN POLYMER JOURNAL, 2013, 49 (08) : 1897 - 1906
  • [10] Repulsive bimodal atomic force microscopy on polymers
    Gigler, Alexander M.
    Dietz, Christian
    Baumann, Maximilian
    Martinez, Nicolas F.
    Garcia, Ricardo
    Stark, Robert W.
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 : 456 - 463