MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning

被引:0
|
作者
Malysheva, Aleksandra [1 ]
Kudenko, Daniel [2 ]
Shpilman, Aleksei [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, JetBrains Res, St Petersburg, Russia
[2] Leibniz Univ Hannover, JetBrains Res, Res Ctr L3S, Hannover, Germany
来源
2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY) | 2019年
关键词
multi-agent system; relevance graphs; deep-learning;
D O I
10.1109/redundancy48165.2019.9003345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over recent years, deep reinforcement learning has shown strong successes in complex single-agent tasks, and more recently this approach has also been applied to multi-agent domains. In this paper, we propose a novel approach, called MAGNet, to multi-agent reinforcement learning that utilizes a relevance graph representation of the environment obtained by a self-attention mechanism, and a message-generation technique. We applied our MAGnet approach to the synthetic predator-prey multi-agent environment and the Pommerman game and the results show that it significantly outperforms state-of-the-art MARL solutions, including Multi-agent Deep Q-Networks (MADQN), Multi-agent Deep Deterministic Policy Gradient (MADDPG), and QMIX.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [2] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [3] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [4] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [5] SCM network with multi-agent reinforcement learning
    Zhao, Gang
    Sun, Ruoying
    FIFTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS 1-3, 2006, : 1294 - 1300
  • [6] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Experience Selection in Multi-Agent Deep Reinforcement Learning
    Wang, Yishen
    Zhang, Zongzhang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 864 - 870
  • [8] Sparse communication in multi-agent deep reinforcement learning
    Han, Shuai
    Dastani, Mehdi
    Wang, Shihan
    NEUROCOMPUTING, 2025, 625
  • [9] GLOBAL-LOCALIZED AGENT GRAPH CONVOLUTION FOR MULTI-AGENT REINFORCEMENT LEARNING
    Liu, Yuntao
    Dou, Yong
    Shen, Siqi
    Qiao, Peng
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3480 - 3484
  • [10] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,