MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning

被引:0
|
作者
Malysheva, Aleksandra [1 ]
Kudenko, Daniel [2 ]
Shpilman, Aleksei [1 ]
机构
[1] Natl Res Univ Higher Sch Econ, JetBrains Res, St Petersburg, Russia
[2] Leibniz Univ Hannover, JetBrains Res, Res Ctr L3S, Hannover, Germany
关键词
multi-agent system; relevance graphs; deep-learning;
D O I
10.1109/redundancy48165.2019.9003345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over recent years, deep reinforcement learning has shown strong successes in complex single-agent tasks, and more recently this approach has also been applied to multi-agent domains. In this paper, we propose a novel approach, called MAGNet, to multi-agent reinforcement learning that utilizes a relevance graph representation of the environment obtained by a self-attention mechanism, and a message-generation technique. We applied our MAGnet approach to the synthetic predator-prey multi-agent environment and the Pommerman game and the results show that it significantly outperforms state-of-the-art MARL solutions, including Multi-agent Deep Q-Networks (MADQN), Multi-agent Deep Deterministic Policy Gradient (MADDPG), and QMIX.
引用
收藏
页码:171 / 176
页数:6
相关论文
共 50 条
  • [1] Deep Hierarchical Communication Graph in Multi-Agent Reinforcement Learning
    Liu, Zeyang
    Wan, Lipeng
    Sui, Xue
    Chen, Zhuoran
    Sun, Kewu
    Lan, Xuguang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 208 - 216
  • [2] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [3] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [4] Deep Multi-Agent Reinforcement Learning: A Survey
    Liang X.-X.
    Feng Y.-H.
    Ma Y.
    Cheng G.-Q.
    Huang J.-C.
    Wang Q.
    Zhou Y.-Z.
    Liu Z.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (12): : 2537 - 2557
  • [5] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [6] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [7] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943
  • [8] Routing with Graph Convolutional Networks and Multi-Agent Deep Reinforcement Learning
    Bhavanasi, Sai Shreyas
    Pappone, Lorenzo
    Esposito, Flavio
    2022 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN), 2022, : 72 - 77
  • [9] Multi-agent Reinforcement Learning in Network Management
    Bagnasco, Ricardo
    Serrat, Joan
    SCALABILITY OF NETWORKS AND SERVICES, PROCEEDINGS, 2009, 5637 : 199 - 202
  • [10] SCM network with multi-agent reinforcement learning
    Zhao, Gang
    Sun, Ruoying
    FIFTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS 1-3, 2006, : 1294 - 1300