Multi-level Sparse Coding for Human Action Recognition

被引:3
|
作者
Luo, Huiwu [1 ]
Lu, Huanzhang [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Natl Key Lab Automat Target Recognit ATR, Changsha, Hunan, Peoples R China
关键词
bag of visual words; contextual information; max pooling; semantic information;
D O I
10.1109/IHMSC.2016.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding is a popular feature coding method in human action recognition, but the feature representation constructed under sparse coding framework cannot capture meaningful contextual information of local features. To address this problem, we propose a multi-level sparse coding method. Concretely, we defined several contexts for each local feature to capture the spatio-temporal contextual information in multiple structures and scales, and descript each context by max pooling the coding vectors in the context, then construct multiple vocabularies. The experimental results evaluated on KTH and YouTube datasets reveal that our method achieves state-of-the-art performance.
引用
收藏
页码:460 / 463
页数:4
相关论文
共 50 条
  • [31] Action Recognition Method Based on Multi-Level Feature Fusion and Temporal Extension
    Wu, Haoyuan
    Xiong, Xin
    Min, Weidong
    Zhao, Haoyu
    Wang, Wenxiang
    Computer Engineering and Applications, 2023, 59 (07) : 134 - 142
  • [32] Multi-level Aggregation in Face Recognition
    Kiersztyn, Adam
    Karczmarek, Pawel
    Pedrycz, Witold
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2018, PT I, 2018, 10841 : 645 - 656
  • [33] Statistics on Temporal Changes of Sparse Coding Coefficients in Spatial Pyramids for Human Action Recognition
    Li, Yang
    Ye, Junyong
    Wang, Tongqing
    Huang, Shijian
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (09) : 1711 - 1714
  • [34] Skeleton-based STIP feature and discriminant sparse coding for human action recognition
    Ushapreethi, P.
    Priya, Lakshmi G. G.
    INTERNATIONAL JOURNAL OF INTELLIGENT UNMANNED SYSTEMS, 2021, 9 (01) : 43 - 61
  • [35] Buffer coding for asymmetric multi-level memory
    Bohossian, Vasken
    Jiang, Anxiao
    Bruck, Jehoshua
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1186 - 1190
  • [36] Optimisation of multi-level block truncation coding
    Chan, KW
    Chan, KL
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2001, 16 (05) : 445 - 459
  • [37] AttnSense: Multi-level Attention Mechanism For Multimodal Human Activity Recognition
    Ma, Haojie
    Li, Wenzhong
    Zhang, Xiao
    Gao, Songcheng
    Lu, Sanglu
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3109 - 3115
  • [38] Multi-Level Interpolation for Inference with Sparse Fuzzy Rules: An Extended Way of Generating Multi-Level Points
    Uehara, Kiyohiko
    Hirota, Kaoru
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2013, 17 (02) : 127 - 148
  • [39] Multi-level human tracking
    Sun, HZ
    Yang, H
    Tan, TN
    ADVANCES IN MULTIMODAL INTERFACES - ICMI 2000, PROCEEDINGS, 2000, 1948 : 340 - 348
  • [40] MULTI-LEVEL ADAPTIVE REGION OF INTEREST AND GRAPH LEARNING FOR FACIAL ACTION UNIT RECOGNITION
    Yan, Jingwei
    Jiang, Boyuan
    Wang, Jingjing
    Li, Qiang
    Wang, Chunmao
    Pu, Shiliang
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 2005 - 2009