Multi-level Sparse Coding for Human Action Recognition

被引:3
|
作者
Luo, Huiwu [1 ]
Lu, Huanzhang [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Natl Key Lab Automat Target Recognit ATR, Changsha, Hunan, Peoples R China
关键词
bag of visual words; contextual information; max pooling; semantic information;
D O I
10.1109/IHMSC.2016.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding is a popular feature coding method in human action recognition, but the feature representation constructed under sparse coding framework cannot capture meaningful contextual information of local features. To address this problem, we propose a multi-level sparse coding method. Concretely, we defined several contexts for each local feature to capture the spatio-temporal contextual information in multiple structures and scales, and descript each context by max pooling the coding vectors in the context, then construct multiple vocabularies. The experimental results evaluated on KTH and YouTube datasets reveal that our method achieves state-of-the-art performance.
引用
收藏
页码:460 / 463
页数:4
相关论文
共 50 条
  • [21] Multi-level dirty paper coding
    Chung, Sae-Young
    IEEE COMMUNICATIONS LETTERS, 2008, 12 (06) : 456 - 458
  • [22] Asymmetric multi-level diversity coding
    Mohajer, Soheil
    Tian, Chao
    Diggavi, Suhas N.
    DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 412 - +
  • [23] Efficient Local Feature Encoding for Human Action Recognition with Approximate Sparse Coding
    Wang, Yu
    Kato, Jien
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (04): : 1212 - 1220
  • [24] Local Random Sparse Coding for Human Action Recognition in Wireless Sensor Networks
    Zhang, Zhong
    Liu, Shuang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2015,
  • [25] Sparse Coding on Local Spatial-Temporal Volumes for Human Action Recognition
    Zhu, Yan
    Zhao, Xu
    Fu, Yun
    Liu, Yuncai
    COMPUTER VISION - ACCV 2010, PT II, 2011, 6493 : 660 - +
  • [26] Human action recognition in videos using distance image volumes and sparse coding
    Liu, Y. (yang97_net@163.com), 1600, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (08):
  • [27] DenseGCN: A multi-level and multi-temporal graph convolutional network for action recognition
    Yu, Chengzhang
    Bao, Wenxia
    IET IMAGE PROCESSING, 2023, 17 (12) : 3401 - 3410
  • [28] Multi-level prime array for sparse sampling
    Alawsh, Saleh A.
    Muqaibel, Ali H.
    IET SIGNAL PROCESSING, 2018, 12 (06) : 688 - 699
  • [29] Locality regularized group sparse coding for action recognition
    Bagheri, Mohammad Ali
    Gao, Qigang
    Escalera, Sergio
    Moeslund, Thomas B.
    Ren, Huamin
    Etemad, Elham
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 158 : 106 - 114
  • [30] ACTION RECOGNITION BASED ON MULTI-LEVEL REPRESENTATION OF 3D SHAPE
    Nair, Binu M.
    Asari, Vijayan K.
    VISAPP 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, 2011, : 378 - 386