Multi-level Sparse Coding for Human Action Recognition

被引:3
|
作者
Luo, Huiwu [1 ]
Lu, Huanzhang [1 ]
机构
[1] Natl Univ Def Technol, Sch Elect Sci & Engn, Natl Key Lab Automat Target Recognit ATR, Changsha, Hunan, Peoples R China
关键词
bag of visual words; contextual information; max pooling; semantic information;
D O I
10.1109/IHMSC.2016.12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding is a popular feature coding method in human action recognition, but the feature representation constructed under sparse coding framework cannot capture meaningful contextual information of local features. To address this problem, we propose a multi-level sparse coding method. Concretely, we defined several contexts for each local feature to capture the spatio-temporal contextual information in multiple structures and scales, and descript each context by max pooling the coding vectors in the context, then construct multiple vocabularies. The experimental results evaluated on KTH and YouTube datasets reveal that our method achieves state-of-the-art performance.
引用
收藏
页码:460 / 463
页数:4
相关论文
共 50 条
  • [1] Human Action Recognition Based On Multi-level Feature Fusion
    Xu, Y. Y.
    Xiao, G. Q.
    Tang, X. Q.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 353 - 355
  • [2] Spatio-temporal Multi-level Fusion for Human Action Recognition
    Manh-Hung Lu
    Thi-Oanh Nguyen
    SOICT 2019: PROCEEDINGS OF THE TENTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY, 2019, : 298 - 305
  • [3] MoFAP: A Multi-level Representation for Action Recognition
    Wang, Limin
    Qiao, Yu
    Tang, Xiaoou
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2016, 119 (03) : 254 - 271
  • [4] MoFAP: A Multi-level Representation for Action Recognition
    Limin Wang
    Yu Qiao
    Xiaoou Tang
    International Journal of Computer Vision, 2016, 119 : 254 - 271
  • [5] HIERARCHICAL IMAGE REPRESENTATION VIA MULTI-LEVEL SPARSE CODING
    Lu, Keyu
    Li, Jian
    An, Xiangjing
    He, Hangen
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4902 - 4906
  • [6] Action Recognition Based on Multi-Level Topological Channel Attention of Human Skeleton
    Hu, Kai
    Shen, Chaowen
    Wang, Tianyan
    Shen, Shuai
    Cai, Chengxue
    Huang, Huaming
    Xia, Min
    SENSORS, 2023, 23 (24)
  • [7] Learning multi-level features for sensor-based human action recognition
    Xu, Yan
    Shen, Zhengyang
    Zhang, Xin
    Gao, Yifan
    Deng, Shujian
    Wang, Yipei
    Fan, Yubo
    Chang, Eric I-Chao
    PERVASIVE AND MOBILE COMPUTING, 2017, 40 : 324 - 338
  • [8] Multi-level channel attention excitation network for human action recognition in videos
    Wu, Hanbo
    Ma, Xin
    Li, Yibin
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 114
  • [9] NON-NEGATIVE SPARSE CODING FOR HUMAN ACTION RECOGNITION
    Amiri, S. Mohsen
    Nasiopoulos, Panos
    Leung, Victor C. M.
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 1421 - 1424
  • [10] ACTION RECOGNITION WITH APPROXIMATE SPARSE CODING
    Wang, Yu
    Kato, Lien
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 770 - 774