Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets

被引:12
作者
Dethloff, G [1 ]
Tan, TV [1 ]
机构
[1] Univ Bretagne Occidentale, UFR Sci & Tech, Dept Math, F-29275 Brest, France
关键词
D O I
10.1017/S002776300002568X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of C(m) into CP(n) with (3n+ 1) moving targets and truncated multiplicities.
引用
收藏
页码:75 / 101
页数:27
相关论文
共 13 条
[1]  
DETHLOFF G, 2006, IN PRESS VIETNAM J M
[2]  
FUJIMOTO H, 1975, NAGOYA MATH J, V58, P1
[3]   Uniqueness problem with truncated multiplicities in value distribution theory, II [J].
Fujimoto, H .
NAGOYA MATHEMATICAL JOURNAL, 1999, 155 :161-188
[4]   Uniqueness problem with truncated multiplicities in value distribution theory [J].
Fujimoto, H .
NAGOYA MATHEMATICAL JOURNAL, 1998, 152 :131-152
[5]   MEROMORPHIC FUNCTIONS THAT SHARE 4 VALUES [J].
GUNDERSEN, GG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (02) :545-567
[7]   An unequivocal clause in the theory of meromorphic function [J].
Nevanlinna, R .
ACTA MATHEMATICA, 1927, 48 (3-4) :367-391
[8]  
Noguchi J., 1990, T MATH MONOGR, V80
[9]   A uniqueness theorem with moving targets without counting multiplicity [J].
Ru, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (09) :2701-2707
[10]  
RU M., 1991, Journal of Geom. Anal., V1, P99