Numerical and experimental transition results evaluation for a morphing wing and aileron system

被引:40
作者
Botez, R. M. [1 ]
Koreanschi, A. [1 ]
Gabor, O. S. [1 ]
Tondji, Y. [1 ]
Guezguez, M. [1 ]
Kammegne, J. T. [1 ]
Grigorie, L. T. [1 ]
Sandu, D. [1 ]
Mebarki, Y. [2 ]
Mamou, M. [2 ]
Amoroso, F. [3 ]
Pecora, R. [3 ]
Lecce, L. [3 ]
Amendola, G. [4 ]
Dimino, I. [4 ]
Concilio, A. [4 ]
机构
[1] Ecole Technol Super, Res Lab Act Control, Avion & AeroServoElast LARCASE, Montreal, PQ, Canada
[2] NRC Aerosp, Aerodynam Lab, Ottawa, ON, Canada
[3] Univ Naples Federico II, Ind Engn Dept, Aerosp Div, Naples, Italy
[4] Italian Aerosp Res Ctr CIRA, Adapt Struct Div, Capua, CE, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
aerodynamics; Morphing Wing Tip; Genetic Optimization Algorithm; Flow Transition; Drag Coefficient Reduction; Wind Tunnel Tests; Morphing Aileron Classification Description: Aerodynamics; Aeroelasticity; Avionics and Systems; Computational Fluid Dynamics; Experimental Fluid Dynamics; LOW-SPEED; OPTIMIZATION; DESIGN;
D O I
10.1017/aer.2018.15
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind-tunnel tested. The development of this wing-tip model was performed in the frame of an international CRIAQ project, and the purpose was to demonstrate the wing upper surface and aileron morphing capabilities in improving the wing-tip aerodynamic performances. During numerical optimisation with 'in-house' genetic algorithm software, and during wind-tunnel experimental tests, it was demonstrated that the air-flow laminarity over the wing skin was promoted, and the laminar flow was extended with up to 9% of the chord. Drag coefficient reduction of up to 9% was obtained when the morphing aileron was introduced.
引用
收藏
页码:747 / 784
页数:38
相关论文
共 42 条
[1]  
AMEDURI S., 2002, J INTEL MAT SYST STR, V23, P381
[2]   Distributed actuation concepts for a morphing aileron device [J].
Amendola, G. ;
Dimino, I. ;
Magnifico, M. ;
Pecora, R. .
AERONAUTICAL JOURNAL, 2016, 120 (1231) :1365-1385
[3]  
[Anonymous], 1989, XFOIL ANAL DESIGN SY, DOI DOI 10.1007/978-3-642-84010-4_1
[4]  
ATAG, 2014, AVIATION BENEFITS BO
[5]  
Barbarino S, 2001, J INTEL MAT SYST STR, V22, P987
[6]   A Review of Morphing Aircraft [J].
Barbarino, Silvestro ;
Bilgen, Onur ;
Ajaj, Rafic M. ;
Friswell, Michael I. ;
Inman, Daniel J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (09) :823-877
[7]   Macro-fiber composite actuators for a swept wing unmanned aircraft [J].
Bilgen, O. ;
Kochersberger, K. B. ;
Inman, D. J. .
AERONAUTICAL JOURNAL, 2009, 113 (1144) :385-395
[8]  
Bilgen O, 2007, P 48 AIAA ASME ASCE
[9]  
BONNEMA K. L., 1998, 35 INT INSTR S 1 4 M, P809
[10]   Numerical and experimental validation of a morphed wing geometry using Price-Paidoussis wind-tunnel testing [J].
Botez, R. M. ;
Koreanschi, A. ;
Sugar-Gabor, O. .
AERONAUTICAL JOURNAL, 2016, 120 (1227) :757-795