Survey of influence of biomass mineral matter in thermochemical conversion of short rotation willow coppice

被引:53
作者
Fuentes, M. E. [2 ]
Nowakowski, D. J. [1 ]
Kubacki, M. L. [1 ]
Cove, J. M. [1 ]
Bridgeman, T. G. [1 ]
Jones, J. M. [1 ]
机构
[1] Univ Leeds, SPEME, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Castilla La Mancha, Dept Quim Fis, Escuela Politecn Super Albacete, Albacete, Spain
基金
英国工程与自然科学研究理事会;
关键词
Biomass; Willow SRC; Pyrolysis; Combustion; Catalysis; Metal acetates;
D O I
10.1179/014426008X370942
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short rotation willow coppice (SRC) has been investigated for the influence of K, Ca, Mg, Fe and P on its pyrolysis and combustion behaviours. These metals are the typical components that appear in biomass. The willow sample was pretreated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with each individual metal at the same mol g(-1) biomass (2.4 x 10(-4) mol g(-1) demineralised willow). Characterisation was performed using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) for combustion. In pyrolysis, volatile fingerprints were measured by means of pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). The yields and distribution of pyrolysis products have been influenced by the presence of the catalysts. Most notably, both potassium and phosphorous strongly catalysed the pyrolysis, modifying both the yield and distribution of reaction products. Temperature programmed combustion TGA indicates that combustion of biomass char is catalysed by all the metals, while phosphorus strongly inhibits the char combustion. In this case, combustion rates follow the order for volatile release/combustion: P>K>Fe>Raw>HCl>Mg>Ca, and for char combustion K>Fe>raw>Ca-Mg>HCl>P. The samples impregnated with phosphorus and potassium were also studied for combustion under flame conditions, and the same trend was observed, i.e. both potassium and phosphorus catalyse the volatile release/combustion, while, in char combustion, potassium is a catalyst and phosphorus a strong inhibitor, i.e. K impregnated>(faster than) raw>demineralised>>P impregnated.
引用
收藏
页码:234 / 241
页数:8
相关论文
共 50 条
  • [1] Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice
    Nowakowski, Daniel J.
    Jones, Jenny M.
    Brydson, Rik M. D.
    Ross, Andrew B.
    FUEL, 2007, 86 (15) : 2389 - 2402
  • [2] Preprocessing and Hybrid Biochemical/Thermochemical Conversion of Short Rotation Woody Coppice for Biofuels
    Williams, C. Luke
    Emerson, Rachel M.
    Hernandez, Sergio
    Klinger, Jordan L.
    Fillerup, Eric P.
    Thomas, Brad J.
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [3] Impact of Willow Short Rotation Coppice on Water Quality
    Ioannis Dimitriou
    Blas Mola-Yudego
    Pär Aronsson
    BioEnergy Research, 2012, 5 : 537 - 545
  • [4] The influence of canopy density on willow leaf rust (Melampsora epitea) severity in willow short rotation coppice
    Toome, M.
    Heinsoo, K.
    Holm, B.
    Luik, A.
    BIOMASS & BIOENERGY, 2010, 34 (08) : 1201 - 1206
  • [5] Impact of Willow Short Rotation Coppice on Water Quality
    Dimitriou, Ioannis
    Mola-Yudego, Blas
    Aronsson, Par
    BIOENERGY RESEARCH, 2012, 5 (03) : 537 - 545
  • [6] Torrefaction of Short Rotation Coppice Willow. Characterization, hydrophobicity assessment and kinetics of the process
    Alvarez, Ana
    Migoya, Sergio
    Menendez, Roy
    Gutierrez, Gemma
    Pizarro, Consuelo
    Bueno, Julio L.
    FUEL, 2021, 295
  • [7] Willow short rotation coppice. Energy and environmental assessment
    Borz, Stelian Alexandru
    Papandrea, Salvatore
    Zoli, Michele
    Bacenetti, Jacopo
    Proto, Andrea Rosario
    CLEANER ENVIRONMENTAL SYSTEMS, 2025, 16
  • [8] Early rotation short rotation willow coppice as a winter food resource for birds
    Fry, D. A.
    Slater, F. M.
    BIOMASS & BIOENERGY, 2011, 35 (07) : 2545 - 2553
  • [9] QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield
    Brereton, Nicholas J. B.
    Pitre, Frederic E.
    Hanley, Steven J.
    Ray, Michael J.
    Karp, Angela
    Murphy, Richard J.
    BIOENERGY RESEARCH, 2010, 3 (03) : 251 - 261
  • [10] QTL Mapping of Enzymatic Saccharification in Short Rotation Coppice Willow and Its Independence from Biomass Yield
    Nicholas J. B. Brereton
    Frederic E. Pitre
    Steven J. Hanley
    Michael J. Ray
    Angela Karp
    Richard J. Murphy
    BioEnergy Research, 2010, 3 : 251 - 261