Multiple noninteractive zero knowledge proofs under general assumptions

被引:200
作者
Feige, U [1 ]
Lapidot, D [1 ]
Shamir, A [1 ]
机构
[1] Weizmann Inst Sci, Dept Appl Math & Comp Sci, IL-76100 Rehovot, Israel
关键词
Hamiltonian cycle; witness indistinguishability;
D O I
10.1137/S0097539792230010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we show how to construct noninteractive zero knowledge proofs for any NP statement under general (rather than number theoretic) assumptions, and how to enable polynomially many provers to give polynomially many such proofs based on a single random string. Our constructions can be used in cryptographic applications in which the prover is restricted to polynomial time.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 29 条
[1]  
[Anonymous], 1982, 23 ANN S FDN COMPUTE, DOI DOI 10.1109/SFCS.1982.45
[2]  
Bellare M, 1996, J CRYPTOL, V9, P149, DOI 10.1007/s001459900009
[3]  
BELLARE M, 1989, LECT NOTES COMPUTER, V435, P194
[4]  
Bellare M., 1989, INT CRYPTOLOGY C ADV, P547, DOI DOI 10.1007/0-387-34805-0_48
[5]   NONINTERACTIVE ZERO-KNOWLEDGE [J].
BLUM, M ;
DESANTIS, A ;
MICALI, S ;
PERSIANO, G .
SIAM JOURNAL ON COMPUTING, 1991, 20 (06) :1084-1118
[6]  
Blum M., 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, P103, DOI 10.1145/62212.62222
[7]   HOW TO GENERATE CRYPTOGRAPHICALLY STRONG SEQUENCES OF PSEUDO-RANDOM BITS [J].
BLUM, M ;
MICALI, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (04) :850-864
[8]  
Blum Manual., 1987, INT C MATHEMATICIANS, P1444
[9]  
De Santis A., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P427, DOI 10.1109/SFCS.1992.267809
[10]  
DESANTIS A, 1988, LECTURE NOTES COMPUT, V403, P269