Lattice approach to Wigner-type theorems

被引:1
作者
Chevalier, G [1 ]
机构
[1] Univ Lyon 1, Inst Camille Jordan, UMR 5208, F-69622 Lyon, France
关键词
orthomodular lattices; lattices of subspaces; pair of dual spaces; Wigner's theorem;
D O I
10.1007/s10773-005-8956-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner's Theorem states that a bijective transformation of the set of all one-dimensional linear subspaces of a complex Hilbert space which preserves orthogonality is induced by either a unitary or an anti-unitary operator. There exist many Wigner-type theorems, in particular in indefinite metric spaces, von Neumanns algebras and Banach spaces and we try to find a common origin of all these results by using properties of the lattice subspaces of certain topological vector spaces. We prove a Wigner-type theorem for a pair of dual spaces which allows us to obtain, as particular cases, the usual Wigner's Theorem and some of its generalizations.
引用
收藏
页码:1905 / 1915
页数:11
相关论文
共 14 条
  • [1] Baer R., 1952, LINEAR ALGEBRA PROJE
  • [2] WIGNERS THEOREM ON SYMMETRIES IN INDEFINITE METRIC SPACES
    BRACCI, L
    MORCHIO, G
    STROCCHI, F
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 41 (03) : 289 - 299
  • [3] Automorphisms of an orthomodular poset of projections
    Chevalier, G
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (07) : 985 - 998
  • [4] CHEVALIER G, 2004, UNPUB WIGNER TYPE TH
  • [5] Dieudonne J., 1942, Ann. Sci. l'Ecole Norm. Superieure, V59, P107, DOI [10.24033/asens.895, DOI 10.24033/ASENS.895]
  • [6] ON ISOMORPHISMS OF LATTICES OF CLOSED SUBSPACES
    FILLMORE, PA
    LONGSTAFF, WE
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (05): : 820 - 829
  • [7] RING AND LATTICE CHARACTERIZATIONS OF COMPLEX HILBERT SPACE
    KAKUTANI, S
    MACKEY, GW
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (08) : 727 - 733
  • [8] Kothe G, 1969, GRUNDLEHREN MATH WIS, V159
  • [9] MACKEY GW, 1945, T AM MATH SOC, V57, P155
  • [10] Maeda F., 1970, Grundlehren der Mathematischen Wissenschaften, V173