On Contraction Properties for Products of Markov Driven Random Matrices

被引:0
作者
Guivarc'h, Y. [1 ]
机构
[1] Univ Rennes 1, IRMAR, CNRS Rennes 1, F-35042 Rennes, France
关键词
Lyapunov exponent; Markov chain; martingale; spectral gap; proximal;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe contraction properties on projective spaces for products of matrices governed by Markov chains which satisfy strong mixing conditions. Assuming that the subgroup generated by the corresponding matrices is "large" we show in particular that the top Lyapunov exponent of their product has multiplicity one and we give an exposition of the related results.
引用
收藏
页码:457 / 489
页数:33
相关论文
共 39 条
[1]   SEMIGROUPS CONTAINING PROXIMAL LINEAR-MAPS [J].
ABELS, H ;
MARGULIS, GA ;
SOIFER, GA .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :1-30
[2]   Lyapunov exponents with multiplicity 1 for deterministic products of matrices [J].
Bonatti, C ;
Viana, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2004, 24 :1295-1330
[3]  
Bougerol Philippe, 1985, PROGR PROBABILITY ST, V8
[4]   Characteristic exponents of the Jacobi Perron algorithm and of the associated map [J].
Broise-Alamichel, A ;
Guivarc'h, Y .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (03) :565-+
[5]  
Carmona R., 1990, SPECTRAL THEORY RAND, DOI 10.1007/978-1-4939-0512-6_4
[6]   ON THE DISTRIBUTION OF A RANDOM VARIABLE OCCURRING IN 1D DISORDERED-SYSTEMS [J].
DECALAN, C ;
LUCK, JM ;
NIEUWENHUIZEN, TM ;
PETRITIS, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (03) :501-523
[7]  
DERRIENNIC Y, 1973, CR ACAD SCI A MATH, V277, P613
[8]  
Furman A., 2002, HDB DYNAMICAL SYSTEM
[9]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [DOI 10.2307/1993589, 10.1090/s0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1963-0163345-0, 10.1090/S0002-9947-1]
[10]  
FURSTENBERG H, 1972, P S PURE MATH, V36, P193