ON A MULTIVARIABLE EXTENSION OF THE HERMITE AND RELATED POLYNOMIALS

被引:0
|
作者
Altin, Abdullah [1 ]
Aktas, Rabia [1 ]
Cekim, Bayram [2 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
[2] Gazi Univ, Fac Sci & Arts, Dept Math, TR-06500 Ankara, Turkey
关键词
Hermite polynomials; Gegenbauer polynomials; Extended Jacobi polynomials; Chan-Chyan-Srivastava polynomials; generating function; integral representation; recurrence relation; GENERATING-FUNCTIONS; FAMILIES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some limit relations between multivariable Hermite polynomials (MHP) and some other multivariable polynomials are given, a class of multivariable polynomials is defined via generating function, which include (MHP) and multivariable Gegenbauer polynomials (MGP) and with the help of this generating function various recurrence relations are obtained to this class. Integral representations of MHP and MGP are also given. Furthermore, general families of multilinear and multilateral generating functions are obtained and their applications are presented.
引用
收藏
页码:487 / 503
页数:17
相关论文
共 50 条
  • [11] Implicit summation formulae for Hermite and related polynomials
    Khan, Subuhi
    Pathan, M. A.
    Hassan, Nader Ali Makboul
    Yasmin, Ghazala
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) : 408 - 416
  • [12] A new family of two-variable polynomials based on hermite polynomials
    Erkus-Duman, Esra
    Ciftci, Hakan
    MATHEMATICA SLOVACA, 2022, 72 (04) : 885 - 898
  • [13] On integrals involving Hermite polynomials
    Babusci, D.
    Dattoli, G.
    Quattromini, M.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1157 - 1160
  • [14] Some properties of the Hermite polynomials
    Qi, Feng
    Guo, Bai-Ni
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (06) : 925 - 935
  • [15] Series with Hermite polynomials and applications
    Boyadzhiev, Khristo N.
    Dil, Ayhan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 80 (3-4): : 385 - 404
  • [16] An Alternative Definition of the Hermite Polynomials Related to the Dunkl Laplacian
    Bie, Hendrik D. E.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2008, 4
  • [17] On generalized Lagrange-Hermite-Bernoulli and related polynomials
    Khan, Waseem A.
    Pathan, M. A.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2019, 23 (02): : 211 - 224
  • [18] Spreading lengths of Hermite polynomials
    Sanchez-Moreno, P.
    Dehesa, J. S.
    Manzano, D.
    Yanez, R. J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (09) : 2136 - 2148
  • [19] Frobenious-Euler Type Polynomials Related to Hermite-Bernoulli Polynomials
    Kurt, Burak
    Simsek, Yilmaz
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [20] An integral representation of the generalized Humbert polynomials via Kampe de Feriet Hermite polynomials
    Jaimini, B. B.
    Saxena, Hemlata
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2009, 79A : 329 - 332