An Alternative Approach to Integrable Discrete Nonlinear Schrodinger Equations

被引:0
作者
Demontis, Francesco [1 ]
van der Mee, Cornelis [1 ]
机构
[1] Univ Cagliari, Dip Matemat, I-09123 Cagliari, Italy
关键词
Inverse scattering transform; Integrable discrete nonlinear Schroedinger equation; Marchenko method; INVERSE SCATTERING; DISCRETIZATION; DYNAMICS;
D O I
10.1007/s10440-012-9797-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we develop the direct and inverse scattering theory of a discrete matrix Zakharov-Shabat system with solutions U (n) and W (n) . Contrary to the discretization scheme enacted by Ablowitz and Ladik, a central difference scheme is applied to the positional derivative term in the matrix Zakharov-Shabat system to arrive at a different discrete linear system. The major effect of the new discretization is that we no longer need the following two conditions in theories based on the Ablowitz-Ladik discretization: (a) invertibility of I (N) -U (n) W (n) and I (M) -W (n) U (n) , and (b) I (N) -U (n) W (n) and I (M) -W (n) U (n) being nonzero multiples of the respective identity matrices I (N) and I (M) .
引用
收藏
页码:169 / 191
页数:23
相关论文
共 28 条
[1]   Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Prinari, Barbara .
INVERSE PROBLEMS, 2007, 23 (04) :1711-1758
[2]   On discretizations of the vector nonlinear Schrodinger equation [J].
Ablowitz, MJ ;
Ohta, Y ;
Trubatch, AD .
PHYSICS LETTERS A, 1999, 253 (5-6) :287-304
[3]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :598-603
[4]   NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS AND FOURIER-ANALYSIS [J].
ABLOWITZ, MJ ;
LADIK, JF .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :1011-1018
[5]  
ABLOWITZ MJ, 1976, STUD APPL MATH, V55, P213
[6]  
[Anonymous], 1974, Sov. Phys. JETP
[7]  
[Anonymous], 2004, LONDON MATH SOC LECT
[8]   Spatially localized, temporally quasiperiodic, discrete nonlinear excitations [J].
Cai, D ;
Bishop, AR ;
GronbechJensen, N .
PHYSICAL REVIEW E, 1995, 52 (06) :R5784-R5787
[9]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[10]   Exact solutions to the integrable discrete nonlinear Schrodinger equation under a quasiscalarity condition [J].
Demontis, Francesco ;
van der Mee, Cornelis .
COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2011, 2 (02)