Linear-Time Subspace Clustering via Bipartite Graph Modeling

被引:39
作者
Adler, Amir [1 ]
Elad, Michael [1 ]
Hel-Or, Yacov [2 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
[2] Interdisciplinary Ctr Herzlia, Dept Comp Sci, IL-46150 Herzliyya, Israel
关键词
Bipartite graph; dictionary; face clustering; sparse representation; subspace clustering; temporal video segmentation; SPARSE; ALGORITHM;
D O I
10.1109/TNNLS.2014.2374631
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a linear-time subspace clustering approach that combines sparse representations and bipartite graph modeling. The signals are modeled as drawn from a union of low-dimensional subspaces, and each signal is represented by a sparse combination of basis elements, termed atoms, which form the columns of a dictionary matrix. The sparse representation coefficients are arranged in a sparse affinity matrix, which defines a bipartite graph of two disjoint sets: 1) atoms and 2) signals. Subspace clustering is obtained by applying low-complexity spectral bipartite graph clustering that exploits the small number of atoms for complexity reduction. The complexity of the proposed approach is linear in the number of signals, thus it can rapidly cluster very large data collections. Performance evaluation of face clustering and temporal video segmentation demonstrates comparable clustering accuracies to state-of-the-art at a significantly lower computational load.
引用
收藏
页码:2234 / 2246
页数:13
相关论文
共 31 条
[21]   Scalable Sparse Subspace Clustering [J].
Peng, Xi ;
Zhang, Lei ;
Yi, Zhang .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :430-437
[22]   Sparse Representations in Audio and Music: From Coding to Source Separation [J].
Plumbley, Mark D. ;
Blumensath, Thomas ;
Daudet, Laurent ;
Gribonval, Remi ;
Davies, Mike E. .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :995-1005
[23]   Dictionaries for Sparse Representation Modeling [J].
Rubinstein, Ron ;
Bruckstein, Alfred M. ;
Elad, Michael .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :1045-1057
[24]   DICTIONARY LEARNING AND SPARSE CODING FOR UNSUPERVISED CLUSTERING [J].
Sprechmann, Pablo ;
Sapiro, Guillermo .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :2042-2045
[25]   Greed is good: Algorithmic results for sparse approximation [J].
Tropp, JA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (10) :2231-2242
[26]  
Turk M. A., 1991, Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (91CH2983-5), P586, DOI 10.1109/CVPR.1991.139758
[27]   Generalized Principal Component Analysis (GPCA) [J].
Vidal, R ;
Ma, Y ;
Sastry, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005, 27 (12) :1945-1959
[28]   Subspace Clustering [J].
Vidal, Rene .
IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) :52-68
[29]   A tutorial on spectral clustering [J].
von Luxburg, Ulrike .
STATISTICS AND COMPUTING, 2007, 17 (04) :395-416
[30]  
Yan JY, 2006, LECT NOTES COMPUT SC, V3954, P94