A turn-on chemosensor based on naphthol-triazole for Al(III) and its application in bioimaging

被引:85
作者
Jia, Tian-Jing [1 ]
Cao, Wei [1 ]
Zheng, Xiang-Jun [1 ]
Jin, Lin-Pei [1 ]
机构
[1] Beijing Normal Univ, Coll Chem, Beijing Key Lab Energy Convers & Storage Mat, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Al(III) sensor; Schiff base; Fluorescence; Turn-on; Cell imaging; PHOTOINDUCED ELECTRON-TRANSFER; FLUORESCENCE-ENHANCED SENSOR; ALUMINUM TOXICITY; IONS; DERIVATIVES; LIGAND; PROBE;
D O I
10.1016/j.tetlet.2013.04.115
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
A new Schiff base 1-[(1H-1,2,4-triazole-3-ylimino)-methyl]-naphthalene-2-ol (H2L) exhibiting high selectivity for Al3+ ion over other metal ions, such as Li+, Na+, K+, Ca2+, Mg2+, Cu2+, Co2+, Mn2+, Ni2+, Zn2+, Cd2+, Pb2+, Fe3+, and Cr3+ was prepared, and it is sensitive for Al3+ with the detection limit reaching 0.69 mu M in DMF. Upon addition of Al3+, the significant enhancement (32-fold) of fluorescence intensity for H2L at 466 nm is ascribed to the formation of a 1:1 complex between Al3+ and H2L, which is denoted as the chelation-enhanced fluorescence (CHEF) effect. The confocal fluorescence microscopy experiments demonstrate that H2L could be used as a fluorescent probe for Al3+ in living cells. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3471 / 3474
页数:4
相关论文
共 42 条
[1]   ALUMINUM [J].
ALFREY, AC .
ADVANCES IN CLINICAL CHEMISTRY, 1983, 23 :69-91
[2]   The significance of water ionic strength on aluminium toxicity in brown trout (Salmo trutta L.) [J].
Alstad, NEW ;
Kjelsberg, BM ;
Vollestad, LA ;
Lydersen, E ;
Poléo, ABS .
ENVIRONMENTAL POLLUTION, 2005, 133 (02) :333-342
[3]   Application of aluminium toxicity indices to soils under various forest species [J].
Alvarez, E ;
Fernández-Marcos, ML ;
Monterroso, C ;
Fernández-Sanjurjo, MJ .
FOREST ECOLOGY AND MANAGEMENT, 2005, 211 (03) :227-239
[4]   Aluminium fluorescence detection with a FRET amplified chemosensor [J].
Arduini, M ;
Felluga, F ;
Mancin, F ;
Rossi, P ;
Tecilla, P ;
Tonellato, U ;
Valentinuzzib, N .
CHEMICAL COMMUNICATIONS, 2003, (13) :1606-1607
[5]   Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review [J].
Barcelo, J ;
Poschenrieder, C .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2002, 48 (01) :75-92
[6]   Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity [J].
Berthon, G .
COORDINATION CHEMISTRY REVIEWS, 2002, 228 (02) :319-341
[7]   Differential toxicity of nitric oxide, aluminum, and amyloid β-peptide in SN56 cholinergic cells from mouse septum [J].
Bielarczyk, H ;
Jankowska, A ;
Madziar, B ;
Matecki, A ;
Michno, A ;
Szutowicz, A .
NEUROCHEMISTRY INTERNATIONAL, 2003, 42 (04) :323-331
[8]   Photoinduced Proton and Charge Transfer in 2-(2′-Hydroxyphenyl)imidazo[4,5-b]pyridine [J].
Brenlla, Alfonso ;
Veiga, Manoel ;
Perez Lustres, J. Luis ;
Rios Rodriguez, M. Carmen ;
Rodriguez-Prieto, Flor ;
Mosquera, Manuel .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (03) :884-896
[9]   EPIDEMIC ALUMINUM INTOXICATION IN HEMODIALYSIS-PATIENTS TRACED TO USE OF AN ALUMINUM PUMP [J].
BURWEN, DR ;
OLSEN, SM ;
BLAND, LA ;
ARDUINO, MJ ;
REID, MH ;
JARVIS, WR .
KIDNEY INTERNATIONAL, 1995, 48 (02) :469-474
[10]   PREDICTING AQUEOUS ALUMINUM CONCENTRATIONS IN NATURAL-WATERS [J].
CRONAN, CS ;
WALKER, WJ ;
BLOOM, PR .
NATURE, 1986, 324 (6093) :140-143