On the linear complexity of binary threshold sequences derived from Fermat quotients

被引:51
作者
Chen, Zhixiong [1 ,2 ]
Du, Xiaoni [3 ]
机构
[1] Putian Univ, Dept Math, Putian 351100, Fujian, Peoples R China
[2] Chinese Acad Sci, Grad Sch, State Key Lab Informat Secur, Beijing 100049, Peoples R China
[3] Northwest Normal Univ, Coll Math & Informat Sci, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fermat quotients; Finite fields; Binary sequences; Linear complexity; Cryptography; SUMS;
D O I
10.1007/s10623-012-9608-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We determine the linear complexity of a family of p (2)-periodic binary threshold sequences derived from Fermat quotients modulo an odd prime p, where p satisfies . The linear complexity equals p (2) - p or p (2) - 1, depending whether or 3 (mod 4). Our research extends the results from previous work on the linear complexity of the corresponding binary threshold sequences when 2 is a primitive root modulo p (2). Moreover, we present a partial result on their linear complexities for primes p with . However such so called Wieferich primes are very rare.
引用
收藏
页码:317 / 323
页数:7
相关论文
共 20 条
[1]   Fermat quotients for composite moduli [J].
Agoh, T ;
Dilcher, K ;
Skula, L .
JOURNAL OF NUMBER THEORY, 1997, 66 (01) :29-50
[2]  
Aly H, 2006, DESIGN CODE CRYPTOGR, V40, P369, DOI 10.1007/s10623-006-0023-5
[3]   On the k-error linear complexity of cyclotomic sequences [J].
Aly, Hassan ;
Meidl, Wilfried ;
Winterhof, Arne .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2007, 1 (03) :283-296
[4]  
Chen Z., 2011, PREPRINT
[5]  
Chen Z., 2012, CHINA COMMU IN PRESS
[6]  
Chen ZX, 2010, LECT NOTES COMPUT SC, V6087, P73, DOI 10.1007/978-3-642-13797-6_6
[7]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449
[8]   Autocorrelation values of generalized cyclotomic sequences of order two [J].
Ding, CS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1699-1702
[9]   Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations [J].
Du, Xiaoni ;
Klapper, Andrew ;
Chen, Zhixiong .
INFORMATION PROCESSING LETTERS, 2012, 112 (06) :233-237
[10]   On the p-divisibility of Fermat quotients [J].
Ernvall, R ;
Metsankyla, T .
MATHEMATICS OF COMPUTATION, 1997, 66 (219) :1353-1365