A codimension-two scenario of sliding solutions in grazing-sliding bifurcations

被引:44
作者
Nordmark, AB
Kowalczyk, P
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Royal Inst Technol, Sch Sci Mech, S-10044 Stockholm, Sweden
关键词
D O I
10.1088/0951-7715/19/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates codimension-two bifurcations that involve grazing-sliding and fold scenarios. An analytical unfolding of this novel codimension-two bifurcation is presented. Using the discontinuity mapping techniques it is shown that the fold curve is one-sided and cubically tangent to the grazing curve locally to the codimension-two point. This theory is then applied to explain the dynamics of a dry-friction oscillator where such a codimension-two point has been found. In particular, the presence and the character of essential bifurcation curves that merge at the codimension-two point are confirmed. This allows us to study the dynamics away from the codimension-two point using a piecewise affine approximation of the normal form for grazing-sliding bifurcations and explain the dynamics observed in the friction system.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 24 条
  • [1] [Anonymous], 1994, FORCED OSCILLATIONS
  • [2] Border collision bifurcations in two-dimensional piecewise smooth maps
    Banerjee, S
    Grebogi, C
    [J]. PHYSICAL REVIEW E, 1999, 59 (04) : 4052 - 4061
  • [3] Robust chaos
    Banerjee, S
    Yorke, JA
    Grebogi, C
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (14) : 3049 - 3052
  • [4] Banerjee S., 2001, NONLINEAR PHENOMENA
  • [5] On the origin and bifurcations of stick-slip oscillations
    Dankowicz, H
    Nordmark, AB
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2000, 136 (3-4) : 280 - 302
  • [6] di Bernardo M, 1998, NONLINEARITY, V11, P859, DOI 10.1088/0951-7715/11/4/007
  • [7] Sliding bifurcations: A novel mechanism for the sudden onset of chaos in dry friction oscillators
    Di Bernardo, M
    Kowalczyk, P
    Nordmark, A
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10): : 2935 - 2948
  • [8] Bifurcations of dynamical systems with sliding: derivation of normal-form mappings
    di Bernardo, M
    Kowalczyk, P
    Nordmark, A
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 170 (3-4) : 175 - 205
  • [9] Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations
    Di Bernardo, M
    Johansson, KH
    Vasca, F
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (04): : 1121 - 1140
  • [10] DIBERNARDO M, 2005, UNPUB NUMERICAL DETE