Prediction of steady-state response for gas sensors based on quartz crystal microbalance

被引:0
|
作者
Osorio Arrieta, D. L. [1 ]
Munoz Aguirre, S. [1 ]
Castillo Mixcoatl, J. [1 ]
Beltran Perez, G. [1 ]
机构
[1] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemat, Puebla, Mexico
来源
2014 IEEE 9TH IBERO-AMERICAN CONGRESS ON SENSORS (IBERSENSOR) | 2014年
关键词
steady-state response; gas sensor; Quartz crystal microbalance; transient response; response prediction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of transient response is necessary to characterize gas sensors in a dynamical system to be used in real time. The transient response to a step function is often used since it is the easiest stimulus to generate and provides useful information about the characteristics of the sensor. We implemented a system to measure the transient response which is based on a vapor generator of volatile organic compounds in combination with a valves arrangement. This system is used to generate a step function variation in the concentration of the odor vapor. For the analysis of the response, we used a bi-exponential model. In the present work, we show the prediction of the steady-state sensor response using a few seconds. A comparison of the results obtained using a frequency counter with a sampling rate of one data per second and another one with five data per second is presented.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Reduction of the Measurement Time by the Prediction of the Steady-State Response for Quartz Crystal Microbalance Gas Sensors
    Osorio-Arrieta, Diana L.
    Munoz-Mata, Jose L.
    Beltran-Perez, Georgina
    Castillo-Mixcoatl, Juan
    Mendoza-Barrera, Claudia O.
    Altuzar-Aguilar, Victor
    Munoz-Aguirre, Severino
    SENSORS, 2018, 18 (08)
  • [2] SPICE model for quartz crystal microbalance gas sensors
    Polo, J
    Llobet, E
    Vilanova, X
    Brezmes, J
    Correig, X
    ELECTRONICS LETTERS, 1999, 35 (10) : 772 - 773
  • [3] Graphite microparticles as coatings for quartz crystal microbalance-based gas sensors
    Shinar, R
    Liu, GJ
    Porter, MD
    ANALYTICAL CHEMISTRY, 2000, 72 (24) : 5981 - 5987
  • [4] Gas sensors based on quartz crystal microbalance for classification of volatile organic compounds
    Lopez Casique, Azucena
    Munoz Aguirre, Severino
    Alcantara Iniesta, Salvador
    Beltran Perez, Georgina
    Castillo Mixcoatl, Juan
    2014 IEEE 9TH IBERO-AMERICAN CONGRESS ON SENSORS (IBERSENSOR), 2014,
  • [5] Ultrasensitive wireless quartz crystal microbalance bio/gas sensors
    Ogi, Hirotsugu
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (04)
  • [6] Electrospun Nanofibers for Quartz Crystal Microbalance Gas Sensors: A Review
    Rianjanu, Aditya
    Fauzi, Fika
    Triyana, Kuwat
    Wasisto, Hutomo Suryo
    ACS APPLIED NANO MATERIALS, 2021, 4 (10) : 9957 - 9975
  • [7] CHARACTERISTICS OF SEMICONDUCTOR GAS SENSORS .1. STEADY-STATE GAS RESPONSE
    CLIFFORD, PK
    TUMA, DT
    SENSORS AND ACTUATORS, 1983, 3 (03): : 233 - 254
  • [8] Quartz-Crystal Microbalance Gas Sensors Based on TiO2 Nanoparticles
    Addabbo, Tommaso
    Fort, Ada
    Mugnaini, Marco
    Vignoli, Valerio
    Baldi, Andrea
    Bruzzi, Mara
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (03) : 722 - 730
  • [9] Quartz Crystal Microbalance sensors based on TiO2 nanoparticles for gas sensing
    Addabbo, Tommaso
    Fort, Ada
    Mugnaini, Marco
    Tani, Marco
    Vignoli, Valerio
    Bruzzi, Mara
    2017 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2017, : 1639 - 1644
  • [10] Improvement in gas selectivity of plasma coated quartz crystal microbalance sensors
    Lezzar, Omar C.
    Bellel, A.
    Boutamine, M.
    Sahli, S.
    Segui, Y.
    Raynaud, P.
    Sensor Letters, 2015, 13 (03) : 259 - 266