LIST COLORING OF COMPLETE MULTIPARTITE GRAPHS

被引:2
作者
Vetrik, Tomas [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, Durban, South Africa
关键词
list coloring; choice number; complete multipartite graph;
D O I
10.7151/dmgt.1583
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The choice number of a graph G is the smallest integer k such that for every assignment of a list L(v) of k colors to each vertex v of G, there is a proper coloring of G that assigns to each vertex v a color from L(v). We present upper and lower bounds on the choice number of complete multipartite graphs with partite classes of equal sizes and complete r-partite graphs with r - 1 partite classes of order two.
引用
收藏
页码:31 / 37
页数:7
相关论文
共 10 条
[1]  
Alon N., 1992, PROBABILITY COMPUTIN, V1, P107
[2]  
[Anonymous], P W COAST C COMB GRA
[3]   Choice number of some complete multi-partite graphs [J].
Enomoto, H ;
Ohba, K ;
Ota, K ;
Sakamoto, J .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :55-66
[4]  
Gravier S, 1998, J GRAPH THEOR, V27, P87, DOI 10.1002/(SICI)1097-0118(199802)27:2<87::AID-JGT4>3.0.CO
[5]  
2-B
[6]   On the choosability of complete multipartite graphs with part size three [J].
Kierstead, HA .
DISCRETE MATHEMATICS, 2000, 211 (1-3) :255-259
[7]  
Tuza Z., 1997, Discussiones Mathematicae Graph Theory, V17, P161
[8]  
Vizing V.G., 1976, Diskret. Analiz, P3
[9]  
WOODALL DR, 2001, LONDON MATH SOC LECT, V288, P269, DOI DOI 10.1017/CBO9780511721328.012
[10]  
YANG D, 2003, THESIS ARIZONA STATE