Linear algebra and bootstrap percolation

被引:30
作者
Balogh, Jozsef [1 ,2 ]
Bollobas, Bela [3 ,4 ]
Morris, Robert [5 ]
Riordan, Oliver [6 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[4] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[5] IMPA, Rio De Janeiro, RJ, Brazil
[6] Univ Oxford, Math Inst, Oxford OX1 3LB, England
基金
美国国家科学基金会;
关键词
Bootstrap percolation; Linear algebra; Weak saturation; DIMENSIONS; THRESHOLD;
D O I
10.1016/j.jcta.2012.03.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In H-bootstrap percolation, a set A subset of V (H) of initially 'infected' vertices spreads by infecting vertices which are the only uninfected vertex in an edge of the hypergraph H. A particular case of this is the H-bootstrap process, in which H encodes copies of H in a graph G. We find the minimum size of a set A that leads to complete infection when G and H are powers of complete graphs and H encodes induced copies of H in G. The proof uses linear algebra, a technique that is new in bootstrap percolation, although standard in the study of weakly saturated graphs, which are equivalent to (edge) H-bootstrap percolation on a complete graph. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1328 / 1335
页数:8
相关论文
共 18 条
[1]   METASTABILITY EFFECTS IN BOOTSTRAP PERCOLATION [J].
AIZENMAN, M ;
LEBOWITZ, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (19) :3801-3813
[3]  
Balogh J, 1998, RANDOM STRUCT ALGOR, V13, P409, DOI 10.1002/(SICI)1098-2418(199810/12)13:3/4<409::AID-RSA11>3.0.CO
[4]  
2-U
[5]   Bootstrap percolation on the hypercube [J].
Balogh, J ;
Bollobás, B .
PROBABILITY THEORY AND RELATED FIELDS, 2006, 134 (04) :624-648
[6]  
Balogh J., GRAPH BOOTSTRA UNPUB
[7]   THE SHARP THRESHOLD FOR BOOTSTRAP PERCOLATION IN ALL DIMENSIONS [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Duminil-Copin, Hugo ;
Morris, Robert .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2667-2701
[8]   Bootstrap Percolation in High Dimensions [J].
Balogh, Jozsef ;
Bollobas, Bela ;
Morris, Robert .
COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (5-6) :643-692
[9]  
Bollobas B., 2011, GRAPH BOOTSTRAP PERC
[10]  
Bollobas B., 1968, BEITRAGE GRAPHENTHEO, P25