Surface group representations to SL(2, C) and Higgs bundles with smooth spectral data

被引:0
作者
Wentworth, Richard A. [1 ]
Wolf, Michael
机构
[1] Univ Maryland, Dept Math, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
CLOSED RIEMANN SURFACES; SELF-DUALITY EQUATIONS; TWISTED HARMONIC MAPS; R-TREES; QUADRATIC-DIFFERENTIALS; MEASURED FOLIATIONS; VARIETIES; MANIFOLDS; ENERGY;
D O I
10.2140/gt.2016.20.3019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for every nonelementary representation of a surface group into SL(2, C) there is a Riemann surface structure such that the Higgs bundle associated to the representation lies outside the discriminant locus of the Hitchin fibration.
引用
收藏
页码:3019 / 3032
页数:14
相关论文
共 24 条
[1]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[2]  
CORLETTE K, 1988, J DIFFER GEOM, V28, P361
[3]  
CULLER M, 1987, P LOND MATH SOC, V55, P571
[4]   VARIETIES OF GROUP-REPRESENTATIONS AND SPLITTINGS OF 3-MANIFOLDS [J].
CULLER, M ;
SHALEN, PB .
ANNALS OF MATHEMATICS, 1983, 117 (01) :109-146
[5]  
Daskalopoulos G, 2000, DUKE MATH J, V101, P189
[6]  
DONALDSON SK, 1987, P LOND MATH SOC, V55, P127
[7]   The monodromy groups of Schwarzian equations on closed Riemann surfaces [J].
Gallo, D ;
Kapovich, M ;
Marden, A .
ANNALS OF MATHEMATICS, 2000, 151 (02) :625-704
[8]  
Goldman WM, 2007, CONTEMP MATH, V432, P45
[9]   STABLE BUNDLES AND INTEGRABLE SYSTEMS [J].
HITCHIN, N .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :91-114
[10]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59