Minimal stencil finite volume scheme with the discrete maximum principle

被引:71
作者
Lipnikov, K. [2 ]
Svyatskiy, D. [2 ]
Vassilevski, Yu. [1 ]
机构
[1] Inst Numer Math, Moscow 119333, Russia
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
ADVECTION-DIFFUSION EQUATIONS; APPROXIMATIONS; MONOTONICITY;
D O I
10.1515/rnam-2012-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a cell-centered finite volume (FV) scheme with the minimal stencil formed by the closest neighbouring cells. The discrete solution satisfies the discrete maximum principle and approximates the exact solution with second-order accuracy. The coefficients in the FV stencil depend on the solution; therefore, the FV scheme is nonlinear. The scheme is applied to a steady state advection-diffusion equation discretized on a general polygonal mesh.
引用
收藏
页码:369 / 385
页数:17
相关论文
共 33 条
[1]   A compact multipoint flux approximation method with improved robustness [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Mallison, B. T. ;
Nordbotten, J. M. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) :1329-1360
[2]   A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media [J].
Agelas, Leo ;
Eymard, Robert ;
Herbin, Raphaele .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :673-676
[3]  
[Anonymous], 1979, NONNEGATIVE MATRICES
[4]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[5]  
Barth T.J., 1989, 27 AEROSPACE SCI M
[6]   A second-order maximum principle preserving finite volume method for steady convection-diffusion problems [J].
Bertolazzi, E ;
Manzini, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2172-2199
[7]   The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem [J].
Brandts, Jan H. ;
Korotov, Sergey ;
Krizek, Michal .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (10) :2344-2357
[8]   Monotonicity recovering and accuracy preserving optimization methods for postprocessing finite element solutions [J].
Burdakov, Oleg ;
Kapyrin, Ivan ;
Vassilevski, Yuri .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (08) :3126-3142
[9]   Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes [J].
Burman, E ;
Ern, A .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (08) :641-646
[10]   A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes [J].
Danilov, A. A. ;
Vassilevski, Yu. V. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2009, 24 (03) :207-227