Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker

被引:137
作者
He, Bingxi [1 ,2 ]
Dong, Di [2 ,3 ]
She, Yunlang [4 ]
Zhou, Caicun [5 ]
Fang, Mengjie [2 ]
Zhu, Yongbei [2 ,6 ]
Zhang, Henghui [7 ]
Huang, Zhipei [1 ]
Jiang, Tao [5 ]
Tian, Jie [2 ,6 ,8 ,9 ]
Chen, Chang [4 ]
机构
[1] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Automat, CAS Key Lab Mol Imaging, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[4] Tongji Univ, Dept Thorac Surg, Shanghai Pulm Hosp, Shanghai, Peoples R China
[5] Tongji Univ, Dept Med Oncol, Shanghai Pulm Hosp, Shanghai, Peoples R China
[6] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med & Engn, Beijing, Peoples R China
[7] Beijing Genecast Biotechnol Co, Dept Med, Beijing, Peoples R China
[8] Xidian Univ, Engn Res Ctr Mol & Neuro Imaging, Sch Life Sci & Technol, Minist Educ, Xian, Peoples R China
[9] Beihang Univ, Minist Ind & Informat Technol, Key Lab Big Data Based Precis Med, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金; 北京市自然科学基金;
关键词
immunotherapy; lung neoplasms; tumor microenvironment; biomarkers; tumor; biostatistics; PD-1; BLOCKADE; SENSITIVITY; THERAPY;
D O I
10.1136/jitc-2020-000550
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Tumor mutational burden (TMB) is a significant predictor of immune checkpoint inhibitors (ICIs) efficacy. This study investigated the correlation between deep learning radiomic biomarker and TMB, including its predictive value for ICIs treatment response in patients with advanced non-small-cell lung cancer (NSCLC). Methods CT images from 327 patients with TMB data (TMB median=6.067 mutations per megabase (range: 0 to 42.151)) were retrospectively collected and randomly divided into a training (n=236), validation (n=26), and test cohort (n=65). We used 3D-densenet to estimate the target tumor area, which used 1020 deep learning features to distinguish High-TMB from Low-TMB patients and establish the TMB radiomic biomarker (TMBRB). The TMBRB was developed in the training cohort combined with validation cohort and evaluated in the test cohort. The predictive value of TMBRB was assessed in a cohort of 123 NSCLC patients who had received ICIs (survival median=462 days (range: 16 to 1128)). Results TMBRB discriminated between High-TMB and Low-TMB patients in the training cohort (area under the curve (AUC): 0.85, 95% CI: 0.84 to 0.87))and test cohort (AUC: 0.81, 95% CI: 0.77 to 0.85). In this study, the predictive value of TMBRB was better than that of a histological subtype (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.71, 95% CI: 0.66 to 0.76) or Radiomic model (AUC of training cohort: 0.75, 95% CI: 0.72 to 0.77; AUC of test cohort: 0.74, 95% CI: 0.69 to 0.79). When predicting immunotherapy efficacy, TMBRB divided patients into a high- and low-risk group with distinctly different overall survival (OS; HR: 0.54, 95% CI: 0.31 to 0.95; p=0.030) and progression-free survival (PFS; HR: 1.78, 95% CI: 1.07 to 2.95; p=0.023). Moreover, TMBRB had a better predictive ability when combined with the Eastern Cooperative Oncology Group performance status (OS: p=0.007; PFS: p=0.003). Visual analysis revealed that tumor microenvironment was important for predicting TMB. Conclusion By combining deep learning technology and CT images, we developed an individual non-invasive biomarker that could distinguish High-TMB from Low-TMB, which might inform decisions on the use of ICIs in patients with advanced NSCLC.
引用
收藏
页数:10
相关论文
共 33 条
[1]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[2]   IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade [J].
Ayers, Mark ;
Lunceford, Jared ;
Nebozhyn, Michael ;
Murphy, Erin ;
Loboda, Andrey ;
Kaufman, David R. ;
Albright, Andrew ;
Cheng, Jonathan D. ;
Kang, S. Peter ;
Shankaran, Veena ;
Piha-Paul, Sarina A. ;
Yearley, Jennifer ;
Seiwert, Tanguy Y. ;
Ribas, Antoni ;
McClanahan, Terrill K. .
JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (08) :2930-2940
[3]   Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J].
Dong, D. ;
Tang, L. ;
Li, Z. -Y ;
Fang, M-J ;
Gao, J-B ;
Shan, X-H ;
Ying, X-J ;
Sun, Y-S ;
Fu, J. ;
Wang, X-X ;
Li, L-M ;
Li, Z-H ;
Zhang, D-F ;
Zhang, Y. ;
Li, Z-M ;
Shan, F. ;
Bu, Z-D ;
Tian, J. ;
Ji, J-F .
ANNALS OF ONCOLOGY, 2019, 30 (03) :431-438
[4]   Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959) [J].
Dong, Di ;
Zhang, Fan ;
Zhong, Lian-Zhen ;
Fang, Meng-Jie ;
Huang, Cheng-Long ;
Yao, Ji-Jin ;
Sun, Ying ;
Tian, Jie ;
Ma, Jun ;
Tang, Ling-Long .
BMC MEDICINE, 2019, 17 (01)
[5]   CTLA-4: new insights into its biological function and use in tumor immunotherapy [J].
Egen, JG ;
Kuhns, MS ;
Allison, JP .
NATURE IMMUNOLOGY, 2002, 3 (07) :611-618
[6]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[7]   Prevalence of PDL1 Amplification and Preliminary Response to Immune Checkpoint Blockade in Solid Tumors [J].
Goodman, Aaron M. ;
Piccioni, David ;
Kato, Shumei ;
Boichard, Amelie ;
Wang, Huan-You ;
Frampton, Garrett ;
Lippman, Scott M. ;
Connelly, Caitlin ;
Fabrizio, David ;
Miller, Vincent ;
Sicklick, Jason K. ;
Kurzrock, Razelle .
JAMA ONCOLOGY, 2018, 4 (09) :1237-1244
[8]   PD-1, PD-L1 Protein Expression in Non-Small Cell Lung Cancer and Their Relationship with Tumor-Infiltrating Lymphocytes [J].
He, Yayi ;
Rozeboom, Leslie ;
Rivard, Christopher J. ;
Ellison, Kim ;
Dziadziuszko, Rafal ;
Yu, Hui ;
Zhou, Caicun ;
Hirsch, Fred R. .
MEDICAL SCIENCE MONITOR, 2017, 23 :1208-1216
[9]   Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden [J].
Hellmann, M. D. ;
Ciuleanu, T. -E. ;
Pluzanski, A. ;
Lee, J. S. ;
Otterson, G. A. ;
Audigier-Valette, C. ;
Minenza, E. ;
Linardou, H. ;
Burgers, S. ;
Salman, P. ;
Borghaei, H. ;
Ramalingam, S. S. ;
Brahmer, J. ;
Reck, M. ;
O'Byrne, K. J. ;
Geese, W. J. ;
Green, G. ;
Chang, H. ;
Szustakowski, J. ;
Bhagavatheeswaran, P. ;
Healey, D. ;
Fu, Y. ;
Nathan, F. ;
Paz-Ares, L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (22) :2093-2104
[10]   Improved Survival with Ipilimumab in Patients with Metastatic Melanoma [J].
Hodi, F. Stephen ;
O'Day, Steven J. ;
McDermott, David F. ;
Weber, Robert W. ;
Sosman, Jeffrey A. ;
Haanen, John B. ;
Gonzalez, Rene ;
Robert, Caroline ;
Schadendorf, Dirk ;
Hassel, Jessica C. ;
Akerley, Wallace ;
van den Eertwegh, Alfons J. M. ;
Lutzky, Jose ;
Lorigan, Paul ;
Vaubel, Julia M. ;
Linette, Gerald P. ;
Hogg, David ;
Ottensmeier, Christian H. ;
Lebbe, Celeste ;
Peschel, Christian ;
Quirt, Ian ;
Clark, Joseph I. ;
Wolchok, Jedd D. ;
Weber, Jeffrey S. ;
Tian, Jason ;
Yellin, Michael J. ;
Nichol, Geoffrey M. ;
Hoos, Axel ;
Urba, Walter J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2010, 363 (08) :711-723