Extremal metrics for the Paneitz operator on closed four-manifolds

被引:0
作者
Perez-Ayala, Samuel [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
Eigenvalues; Paneitz operator; Critical metrics; Conformal class; Conformal-harmonic map; UPPER-BOUNDS; MINIMAL IMMERSIONS; GENERIC PROPERTIES; 1ST EIGENVALUE; LAPLACIAN;
D O I
10.1016/j.geomphys.2022.104666
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M-4, g) be a closed Riemannian manifold of dimension four. We investigate the properties of metrics which are critical points of the eigenvalues of the Paneitz operator when considered as functionals on the space of Riemannian metrics with fixed volume. We prove that critical metrics of the aforementioned functional restricted to conformal classes are associated with a higher-order analog of harmonic maps (known as extrinsic conformal-harmonic maps) into round spheres. This extends to four-manifolds well-known results on closed surfaces relating metrics maximizing laplacian eigenvalues in conformal classes with the existence of harmonic maps into spheres. The case of general critical points (not restricted to conformal classes) is also studied, and partial characterization of these is provided. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:26
相关论文
共 39 条
[1]  
Ammann B., 2011, London Mathematical Society Lecture Note Series, V394, P1
[2]  
Angelsberg G., 2007, BIHARMONIC MAPS
[3]  
[Anonymous], 2014, CRITICAL METRICS RIE
[4]   GENERIC PROPERTIES OF THE EIGENVALUE OF THE LAPLACIAN FOR COMPACT RIEMANNIAN-MANIFOLDS [J].
BANDO, S ;
URAKAWA, H .
TOHOKU MATHEMATICAL JOURNAL, 1983, 35 (02) :155-172
[5]   A conformal analogue of harmonic maps [J].
Berard, Vincent .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (17-18) :985-988
[6]   A construction of conformal-harmonic maps [J].
Biquard, Olivier ;
Madani, Farid .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) :967-970
[7]  
Brezis H, 2011, UNIVERSITEXT, P1
[8]   ON THE MULTIPLICITY OF EIGENVALUES OF CONFORMALLY COVARIANT OPERATORS [J].
Canzani, Yaiza .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (03) :947-970
[9]   Conformal Invariants from Nodal Sets. I. Negative Eigenvalues and Curvature Prescription [J].
Canzani, Yaiza ;
Gover, Rod ;
Jakobson, Dmitry ;
Ponge, Raphael ;
Gover, Rod ;
Malchiodi, Andrea .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (09) :2356-2400
[10]  
Chang S.Y.A., 2004, Zurich Lectures in Advanced Mathematics