Eigenvalue Optimisation on Flat Tori and Lattice Points in Anisotropically Expanding Domains

被引:3
作者
Lagace, Jean [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2020年 / 72卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
spectral optimisation; Laplacian; eigenvalue; asymptotics; DIRICHLET; GEOMETRY; CUBOIDS;
D O I
10.4153/S0008414X19000130
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the maximisation of the k-th eigenvalue of the Laplacian amongst flat tori of unit volume in dimension d as k goes to infinity. We show that in any dimension maximisers exist for any given k, but that any sequence of maximisers degenerates as k goes to infinity when the dimension is at most 10. Furthermore, we obtain specific upper and lower bounds for the injectivity radius of any sequence of maximisers. We also prove that flat Klein bottles maximising the k-th eigenvalue of the Laplacian exhibit the same behaviour. These results contrast with those obtained recently by Gittins and Larson, stating that sequences of optimal cuboids for either Dirichlet or Neumann boundary conditions converge to the cube no matter the dimension. We obtain these results via Weyl asymptotics with explicit control of the remainder in terms of the injectivity radius. We reduce the problem at hand to counting lattice points inside anisotropically expanding domains, where we generalise methods of Yu. Kordyukov and A. Yakovlev by considering domains that expand at different rates in various directions.
引用
收藏
页码:967 / 987
页数:21
相关论文
共 28 条
[1]  
[Anonymous], 1971, LECT NOTES MATH, DOI DOI 10.1007/BFB0064643
[2]   Optimal spectral rectangles and lattice ellipses [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2150)
[3]   Numerical Optimization of Low Eigenvalues of the Dirichlet and Neumann Laplacians [J].
Antunes, Pedro R. S. ;
Freitas, Pedro .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) :235-257
[4]   NEW BOUNDS IN SOME TRANSFERENCE THEOREMS IN THE GEOMETRY OF NUMBERS [J].
BANASZCZYK, W .
MATHEMATISCHE ANNALEN, 1993, 296 (04) :625-635
[5]  
Berger A, 2015, ANN GLOB ANAL GEOM, V47, P285, DOI 10.1007/s10455-014-9446-9
[6]  
BUSER P, 1982, ANN SCI ECOLE NORM S, V15, P213
[7]  
CASSELS JWS, 1971, GRUNDLEHREN MATH WIS, V99
[8]   RIEMANNIAN METRICS WITH LARGE LAMBDA(1) [J].
COLBOIS, B ;
DODZIUK, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (03) :905-906
[9]   SPECTRUM OF POSITIVE ELLIPTIC OPERATORS AND PERIODIC BICHARACTERISTICS [J].
DUISTERMAAT, JJ ;
GUILLEMIN, VW .
INVENTIONES MATHEMATICAE, 1975, 29 (01) :39-79
[10]  
Faber G, 1923, Munch. Ber., P169