Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices

被引:24
作者
Fujiwara, M. [1 ]
Tsuya, D. [2 ]
Maki, H. [1 ]
机构
[1] Keio Univ, Dept Appl Phys & Physicoinformat, Yokohama, Kanagawa 2238522, Japan
[2] Natl Inst Mat Sci, Nanotechnol Innovat Ctr, Tsukuba, Ibaraki 3050047, Japan
关键词
LIGHT-EMISSION; FILM; EMITTER;
D O I
10.1063/1.4824207
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report electrically driven narrow-linewidth blackbody emission from carbon-nanotube with Fabry-Perot microcavities. We fabricated two types of devices with microcavities consisting of either gold mirrors or distributed Bragg reflectors (DBR). Gold-mirror microcavity devices exhibit blackbody emission with narrowed full-width at half-maximum of similar to 50 nm in contrast to the broad normal blackbody emission spectrum. The spectra from these devices can be explained by theoretical calculations accounting for the temperature-dependent intrinsic blackbody spectra and transmittance spectrum of the microcavity. Moreover, the DBR microcavity devices show a narrower resonant peak inside the photonic bandgap, compared with the gold-mirror microcavity device. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 31 条
[1]   Electroluminescence from single-wall carbon nanotube network transistors [J].
Adam, E. ;
Aguirre, C. M. ;
Marty, L. ;
St-Antoine, B. C. ;
Meunier, F. ;
Desjardins, P. ;
Menard, D. ;
Martel, R. .
NANO LETTERS, 2008, 8 (08) :2351-2355
[2]   ON THE SPONTANEOUS LIFETIME CHANGE IN AN IDEAL PLANAR MICROCAVITY - TRANSITION FROM A MODE CONTINUUM TO QUANTIZED MODES [J].
BJORK, G .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (10) :2314-2318
[3]   Single-electron transport in ropes of carbon nanotubes [J].
Bockrath, M ;
Cobden, DH ;
McEuen, PL ;
Chopra, NG ;
Zettl, A ;
Thess, A ;
Smalley, RE .
SCIENCE, 1997, 275 (5308) :1922-1925
[4]   Bright infrared emission from electrically induced excitons in carbon nanotubes [J].
Chen, J ;
Perebeinos, V ;
Freitag, M ;
Tsang, J ;
Fu, Q ;
Liu, J ;
Avouris, P .
SCIENCE, 2005, 310 (5751) :1171-1174
[5]   Light-matter interaction in a microcavity-controlled graphene transistor [J].
Engel, Michael ;
Steiner, Mathias ;
Lombardo, Antonio ;
Ferrari, Andrea C. ;
Loehneysen, Hilbert V. ;
Avouris, Phaedon ;
Krupke, Ralph .
NATURE COMMUNICATIONS, 2012, 3
[6]   Thin Film Nanotube Transistors Based on Self-Assembled, Aligned, Semiconducting Carbon Nanotube Arrays [J].
Engel, Michael ;
Small, Joshua P. ;
Steiner, Mathias ;
Freitag, Marcus ;
Green, Alexander A. ;
Hersam, Mark C. ;
Avouris, Phaedon .
ACS NANO, 2008, 2 (12) :2445-2452
[7]   Imaging dissipation and hot spots in carbon nanotube network transistors [J].
Estrada, David ;
Pop, Eric .
APPLIED PHYSICS LETTERS, 2011, 98 (07)
[8]   Probing Planck's Law with Incandescent Light Emission from a Single Carbon Nanotube [J].
Fan, Yuwei ;
Singer, S. B. ;
Bergstrom, Raymond ;
Regan, B. C. .
PHYSICAL REVIEW LETTERS, 2009, 102 (18)
[9]   Optical microcavity with semiconducting single-wall carbon nanotubes [J].
Gaufres, Etienne ;
Izard, Nicolas ;
Le Roux, Xavier ;
Kazaoui, Said ;
Marris-Morini, Delphine ;
Cassan, Eric ;
Vivien, Laurent .
OPTICS EXPRESS, 2010, 18 (06) :5740-5745
[10]   Photon antibunching in the photoluminescence spectra of a single carbon nanotube [J].
Hoegele, Alexander ;
Galland, Christophe ;
Winger, Martin ;
Imamoglu, Atac .
PHYSICAL REVIEW LETTERS, 2008, 100 (21)