Power system modeling for inverse problems

被引:77
作者
Hiskens, IA [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
boundary value problems; dynamic embedded optimization; dynamic modeling; hybrid systems; inverse problems; power system dynamics;
D O I
10.1109/TCSI.2004.823654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Large disturbances in power systems often initiate complex interactions between continuous dynamics and discrete events. The paper develops a hybrid automaton that describes such behavior. Hybrid systems can be modeled in a systematic way by a set of differential-algebraic equations, modified to incorporate impulse (state reset) action and,constraint switching.. This differential-algebraic impulsive-switched (DAIS) model is a realization of the hybrid automaton. The paper presents a practical object-oriented approach to implementing the DAIS model. Each component of a system is modeled autonomously. Connections between components are established by simple algebraic equations. The systematic nature of the DAIS model enables efficient computation of trajectory sensitivities, which in turn facilitate algorithms for solving inverse problems. The paper outlines a number of inverse problems, including parameter uncertainty, parameter estimation, grazing bifurcations, boundary value problems, and dynamic embedded optimization.
引用
收藏
页码:539 / 551
页数:13
相关论文
共 47 条