The spatial diamond-graphite transition in detonation nanodiamond as revealed by small-angle neutron scattering

被引:33
作者
Avdeev, Mikhail V. [1 ]
Aksenov, Victor L. [1 ,2 ]
Tomchuk, Oleksandr V. [1 ,3 ]
Bulavin, Leonid A. [3 ]
Garamus, Vasil M. [4 ]
Osawa, Eiji [5 ]
机构
[1] Joint Inst Nucl Res, FLNP, Dubna 141980, Russia
[2] IV Kurchatov Atom Energy Inst, Natl Res Ctr, Moscow 123182, Russia
[3] Natl Taras Shevchenko Univ Kyiv, Dept Phys, UA-01601 Kiev, Ukraine
[4] Helmholtz Zentrum Geesthacht, Ctr Mat & Coastal Res, D-21502 Geesthacht, Germany
[5] Shinshu Univ, Asama Res Extens Ctr, NanoCarbon Res Inst, Ueda, Nagano 3868567, Japan
关键词
ULTRANANOCRYSTALLINE DIAMOND; POLYDISPERSE; MODEL;
D O I
10.1088/0953-8984/25/44/445001
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
A spatial transition of the carbon state in detonation nanodiamond (DND) from crystalline diamond inside the particle to a graphite-like state at the DND surface is proposed on the basis of small-angle neutron scattering (SANS) analysis. The SANS contrast variation from concentrated (5 wt%) dispersions of DND in liquids (water, dimethylsulfoxide) reveals a shift in the mean scattering length density of DND as compared to pure diamond, which is related to the presence of a non-diamond component in the DND structure. At the same time, the diffusive character of the particle surface is deduced based on the deviation from the Porod law. The two observations are combined to conclude that the continuous radial density profile over the whole particle volume conforms to a simple power law. The profile naturally suggests that non-diamond states are concentrated mainly close to the particle surface; still there is no sharp boundary between the radial distributions of the two states of carbon in DND.
引用
收藏
页数:7
相关论文
共 33 条
[1]   The structure of diamond nanoclusters [J].
Aleksenskii, AE ;
Baidakova, MV ;
Vul', AY ;
Siklitskii, VI .
PHYSICS OF THE SOLID STATE, 1999, 41 (04) :668-671
[2]   Pressure induced changes in fractal structure of detonation nanodiamond powder by small-angle neutron scattering [J].
Avdeev, M. V. ;
Aksenov, V. L. ;
Rosta, L. .
DIAMOND AND RELATED MATERIALS, 2007, 16 (12) :2050-2053
[3]   Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering [J].
Avdeev, M. V. ;
Rozhkova, N. N. ;
Aksenov, V. L. ;
Garamus, V. M. ;
Willumeit, R. ;
Osawa, E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (22) :9473-9479
[4]   Contrast variation in small-angle scattering experiments on polydisperse and superparamagnetic systems: basic functions approach [J].
Avdeev, Mikhail V. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :56-70
[5]   Pore structures in shungites as revealed by small-angle neutron scattering [J].
Avdeev, MV ;
Tropin, TV ;
Aksenov, VL ;
Rosta, L ;
Garamus, VM ;
Rozhkova, NN .
CARBON, 2006, 44 (05) :954-961
[6]   Self-assembly in nanodiamond agglutinates [J].
Barnard, Amanda S. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (34) :4038-4041
[7]   Crystallinity and surface electrostatics of diamond nanocrystals [J].
Barnard, Amanda S. ;
Sternberg, Michael .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4811-4819
[8]   Structural relaxation and relative stability of nanodiamond morphologies [J].
Barnard, AS ;
Russo, SP ;
Snook, IK .
DIAMOND AND RELATED MATERIALS, 2003, 12 (10-11) :1867-1872
[9]   Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension [J].
Beaucage, G .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1996, 29 (pt 2) :134-146
[10]   A stable suspension of single ultrananocrystalline diamond particles [J].
Eidelman, ED ;
Siklitsky, VI ;
Sharonova, LV ;
Yagovkina, MA ;
Vul', AY ;
Takahashi, M ;
Inakuma, M ;
Ozawa, M ;
Osawa, E .
DIAMOND AND RELATED MATERIALS, 2005, 14 (11-12) :1765-1769