Study of Generalized Derivations in Rings with Involution

被引:1
作者
Mozumder, Muzibur Rahman [1 ]
Abbasi, Adnan [1 ]
Dar, Nadeem Ahmad [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Govt HSS, Shopian, Jammu & Kashmir, India
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 01期
关键词
prime ring; generalized derivation; derivation; involution; COMMUTATIVITY; PRIME;
D O I
10.5666/KMJ.2019.59.1.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a prime ring with involution of the second kind and centre Z(R). Suppose R admits a generalized derivation F : R -> R associated with a derivation d : R -> R. The purpose of this paper is to study the commutativity of a prime ring R satisfying any one of the following identities: (i) F(x) circle x* is an element of Z(R) (ii) F([x, x*]) +/- x circle x* is an element of Z(R) (iii) F(x circle x*) +/- [x, x*] is an element of Z(R) (iv) F(x) circle d(x*) +/- x circle x* is an element of Z(R) (v) [F(x), d(x*)] +/- x circle x* is an element of Z(R) (vi) F(x) +/- x circle x* is an element of Z(R) (viii) F(x) +/- [x, x*] is an element of Z(R) (viii) [F(x), x*] -/+ F(x) circle x* is an element of Z(R) (ix) F(x circle x*) is an element of Z(R) for all x is an element of R.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 19 条
[1]  
Albas E, 2004, ALGEBR COLLOQ, V11, P399
[2]  
Ali S, 2015, B IRAN MATH SOC, V41, P1465
[3]   ON STRONG COMMUTATIVITY PRESERVING LIKE MAPS IN RINGS WITH INVOLUTION [J].
Ali, Shakir ;
Dar, Nadeem Ahmad ;
Khan, Abdul Nadim .
MISKOLC MATHEMATICAL NOTES, 2015, 16 (01) :17-24
[4]   On *-centralizing mappings in rings with involution [J].
Ali, Shakir ;
Dar, Nadeem Ahmed .
GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (01) :25-28
[5]  
Ashraf M., 2007, Southeast Asian Bull. Math., V31, P415
[6]  
Bell H. E., 2007, Math. J. Okayama Univ, V49, P139
[7]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[8]   ON COMMUTATIVITY AND STRONG COMMUTATIVITY-PRESERVING MAPS [J].
BELL, HE ;
DAIF, MN .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :443-447
[9]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[10]   Generalized Derivations in Rings with Involution [J].
Dar, Nadeem Ahmad ;
Khan, Abdul Nadim .
ALGEBRA COLLOQUIUM, 2017, 24 (03) :393-399