Nilpotent lie groups in Clifford analysis and mathematical physics

被引:0
作者
Kisil, VV [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
来源
CLIFFORD ANALYSIS AND ITS APPLICATIONS | 2001年 / 25卷
关键词
Clifford analysis; Heisenberg group; nilpotent Lie group; Segal-Bargmann space; Toeplitz operators; singular integral operators; pseudo differential operators; functional calculus; joint spectrum; quantum mechanics; spinor field;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to popularise nilpotent Lie groups (notably the Heisenberg group and alike) in the context of Clifford analysis and related models of mathematical physics. It is argued that these groups are underinvestigated in comparison with other classical branches of analysis. We list five general directions which seem to be promising for further research.
引用
收藏
页码:135 / 141
页数:7
相关论文
共 33 条
[1]  
Anderson R F., 1969, J FUNCT ANAL, V4, P240, DOI DOI 10.1016/0022-1236(69)90013-5
[2]  
[Anonymous], J NATUR GEOM
[3]  
[Anonymous], 1999, COMPLEX VARIABLES TH
[4]  
[Anonymous], 1992, UNIVERSITEXT, DOI DOI 10.1007/978-1-4613-9200-2
[5]  
BEREZIN FA, 1988, METHOD 2 QUANTIZATIO
[6]  
CIGLER J, 1978, NEDERL AKAD WETENSCH, V81, P27
[7]  
Cnops J, 1999, MATH METHOD APPL SCI, V22, P353, DOI 10.1002/(SICI)1099-1476(19990310)22:4<353::AID-MMA44>3.0.CO
[8]  
2-#
[9]  
CNOPS J, 1994, THESIS U GENT
[10]  
Coburn L.A., 1994, Algebraic Methods in Operator Theory, P101