Reply to "Comment on 'Mean first passage time for anomalous diffusion.' "

被引:13
作者
Gitterman, M [1 ]
机构
[1] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 03期
关键词
D O I
10.1103/PhysRevE.69.033102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using the Laplace transform method we show an exact solution for the mean free passage time of a subdiffusive particle, thereby correcting the mistake in our previous paper [Phys. Rev E 62, 6065 (2000)]. The time diverges at large t.
引用
收藏
页数:2
相关论文
共 10 条
[1]  
[Anonymous], 1965, SCHAUMS OUTLINE THEO
[2]   Fractional Fokker-Planck equation, solution, and application [J].
Barkai, E .
PHYSICAL REVIEW E, 2001, 63 (04)
[3]   One-dimensional diffusion through single and double-square barriers [J].
Berdichevsky, V ;
Gitterman, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08) :1567-1580
[4]  
GARDINER GW, 1997, HDB STOCHASTIC METHO
[5]   Mean first passage time for anomalous diffusion [J].
Gitterman, M .
PHYSICAL REVIEW E, 2000, 62 (05) :6065-6070
[6]   Boundary value problems for fractional diffusion equations [J].
Metzler, R ;
Klafter, J .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 278 (1-2) :107-125
[7]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77
[8]   Anomalous diffusion and the first passage time problem [J].
Rangarajan, G ;
Ding, MZ .
PHYSICAL REVIEW E, 2000, 62 (01) :120-133
[9]  
YUSTE SB, 2004, COMMENT PHYS REV E, V69, P33101
[10]   Chaos, fractional kinetics, and anomalous transport [J].
Zaslavsky, GM .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 371 (06) :461-580