Local modelling of US mortality rates: A multiscale geographically weighted regression approach

被引:24
作者
Cupido, Kyran [1 ]
Fotheringham, A. Stewart [2 ]
Jevtic, Petar [3 ]
机构
[1] St Francis Xavier Univ, Dept Math & Stat, 4130 Univ Ave, Antigonish, NS B2G 2W5, Canada
[2] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ USA
[3] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ USA
基金
美国国家科学基金会;
关键词
geographically weighted regression; mortality; multiscale; social capital; spatial nonstationarity; spatial patterns; spatially varying coefficients; PROSTATE-CANCER MORTALITY; UNITED-STATES; LIFE EXPECTANCY; ADULTS; INCOME; DEATH;
D O I
10.1002/psp.2379
中图分类号
C921 [人口统计学];
学科分类号
摘要
This work provides an investigation of the presence of spatial variability in the determinants of mortality rates. Specifically, by using the age-adjusted mortality rates of the counties of the contiguous United States, this research applies a multiscale geographically weighted regression (MGWR) approach to examine the spatial variations in the relationships between mortality rates and a diverse group of associated determinants. The results demonstrate that the MGWR approach produces a differentiable account of the global, regional, and local effects acting on mortality rates across the United States. Thus, this work lays the groundwork for the consideration of spatial varying effects on mortality rates, which operate at different spatial scales.
引用
收藏
页数:11
相关论文
共 47 条
[31]  
O'Sullivan D, 2003, GEOGR ANAL, V35, P272, DOI 10.1353/geo.2003.0008
[32]   Differences In Life Expectancy Due To Race And Educational Differences Are Widening, And Many May Not Catch Up [J].
Olshansky, S. Jay ;
Antonucci, Toni ;
Berkman, Lisa ;
Binstock, Robert H. ;
Boersch-Supan, Axel ;
Cacioppo, John T. ;
Carnes, Bruce A. ;
Carstensen, Laura L. ;
Fried, Linda P. ;
Goldman, Dana P. ;
Jackson, James ;
Kohli, Martin ;
Rother, John ;
Zheng, Yuhui ;
Rowe, John .
HEALTH AFFAIRS, 2012, 31 (08) :1803-1813
[33]   Targeting the spatial context of obesity determinants via multiscale geographically weighted regression [J].
Oshan, Taylor M. ;
Smith, Jordan P. ;
Fotheringham, A. Stewart .
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2020, 19 (01)
[34]   MGWR: A Python']Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale [J].
Oshan, Taylor M. ;
Li, Ziqi ;
Kang, Wei ;
Wolf, Levi J. ;
Fotheringham, A. Stewart .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (06)
[35]   Place and region: looking through the prism of scale [J].
Paasi, A .
PROGRESS IN HUMAN GEOGRAPHY, 2004, 28 (04) :536-546
[36]  
Ripley B., 2013, CRAN, V538, P113, DOI DOI 10.32614/CRAN.PACKAGE.MASS
[37]   SOCIAL, BEHAVIORAL, AND BIOLOGICAL FACTORS, AND SEX DIFFERENCES IN MORTALITY [J].
Rogers, Richard G. ;
Everett, Bethany G. ;
Saint Onge, Jarron M. ;
Krueger, Patrick M. .
DEMOGRAPHY, 2010, 47 (03) :555-578
[38]  
Rostron Brian L, 2010, Vital Health Stat 2, P1
[39]  
Rupasingha A., 2006, J SOCIO-ECON, V35, P83, DOI [10.1016/j.socec.2005.11.001, DOI 10.1016/J.SOCEC.2005.11.001]
[40]   UV, latitude, and spatial trends in prostate cancer mortality: All sunlight is not the same (United States) [J].
Schwartz, Gary G. ;
Hanchette, Carol L. .
CANCER CAUSES & CONTROL, 2006, 17 (08) :1091-1101