Anomaly detection in vessel tracks using Bayesian networks

被引:115
|
作者
Mascaro, Steven [1 ]
Nicholson, Ann [2 ]
Korb, Kevin [2 ]
机构
[1] Bayesian Intelligence Pty Ltd, Clarinda, Vic 3169, Australia
[2] Monash Univ, Clayton Sch IT, Clayton, Vic 3800, Australia
关键词
Machine learning; Bayesian networks; Models of normality; Anomaly detection; AIS; Maritime data; ALERT;
D O I
10.1016/j.ijar.2013.03.012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years electronic tracking has provided voluminous data on vessel movements, leading researchers to try various data mining techniques to find patterns and, especially, deviations from patterns, i.e., for anomaly detection. Here we describe anomaly detection with data mined Bayesian Networks, learning them from real world Automated Identification System (AIS) data, and from supplementary data, producing both dynamic and static Bayesian network models. We find that the learned networks are quite easy to examine and verify despite incorporating a large number of variables. We also demonstrate that combining dynamic and static modelling approaches improves the coverage of the overall model and thereby anomaly detection performance. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [1] Anomaly Detection in Smart Homes Using Bayesian Networks
    Saqaeeyan, Sasan
    Javadi, Hamid Haj Seyyed
    Amirkhani, Hossein
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (04) : 1796 - 1816
  • [2] Predicting Vessel Tracks in Waterways for Maritime Anomaly Detection
    Minssen, Finn-Matthis
    Klemm, Jannik
    Steidel, Matthias
    Niemi, Arto
    TRANSACTIONS ON MARITIME SCIENCE-TOMS, 2024, 13 (01):
  • [3] Interactive Anomaly Detection in Mixed Tabular Data using Bayesian Networks
    Dufraisse, Evan
    Leray, Philippe
    Nedellec, Raphael
    Benkhelif, Tarek
    INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 185 - 196
  • [4] Anomaly Detection in Categorical Datasets Using Bayesian Networks
    Rashidi, Lida
    Hashemi, Sattar
    Hamzeh, Ali
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT II, 2011, 7003 : 610 - 619
  • [5] Anomaly Detection System for Water Networks in Northern Ethiopia Using Bayesian Inference
    Tashman, Zaid
    Gorder, Christoph
    Parthasarathy, Sonali
    Nasr-Azadani, Mohamad M.
    Webre, Rachel
    SUSTAINABILITY, 2020, 12 (07)
  • [6] An Efficient Algorithm for Anomaly Detection in a Flight System Using Dynamic Bayesian Networks
    Saada, Mohamad
    Meng, Qinggang
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT III, 2012, 7665 : 620 - 628
  • [7] Building detection using Bayesian Networks
    Stassopoulou, A
    Caelli, T
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2000, 14 (06) : 715 - 733
  • [8] Anomaly Detection in Vessel Tracking Using Support Vector Machines (SVMs)
    Handayani, Dini Oktarina Dwi
    Sediono, Wahju
    Shah, Asadullah
    2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT), 2014, : 213 - 217
  • [9] BAYESIAN-NETWORKS-BASED MISUSE AND ANOMALY PREVENTION SYSTEM
    Bringas, Pablo Garcia
    Penya, Yoseba K.
    Paraboschi, Stefano
    Salvaneschi, Paolo
    ICEIS 2008: PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL AIDSS: ARTIFICIAL INTELLIGENCE AND DECISION SUPPORT SYSTEMS, 2008, : 62 - +
  • [10] A Bayesian Approach To Distributed Anomaly Detection In Edge AI Networks
    Odiathevar, Murugaraj
    Seah, Winston K. G.
    Frean, Marcus
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3306 - 3320